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ABSTRACT 

 

Genetic information plays an important role in 

each individual for their differentiation. DNA 

replication is a highly conserved process that 

accurately copies the genetic information from 

one generation to the next. The processes of 

chromatin disassembly and reassembly during 

DNA replication also have to be precisely 

regulated to ensure that the genetic material is 

compactly packaged to fit into the nucleus while 

also maintaining the epigenetic information that 

is carried by the histone proteins bound to the 

DNA, through cell divisions. So, for the 

synthesis of genome or gene a group of eight 

proteins collectively known as octamer proteins 

or histones plays a crucial role. Colloid of 

chromosomes is converts into the double 

stranded DNA structure with intermediate 

structure of histone proteins. As eukaryotic 

replication disrupts each nucleosome as the fork 

passes, followed by incorporation of newly 

synthesized histones into nucleosomes in the 

daughter genomes. For the cellular machinery to 

access the DNA, the chromatin must be 

unwound and the DNA cleared of histone 

proteins. In this review, we focus on the process 

of replication-coupled nucleosome assembly to 

understand how characteristic steady-state 

nucleosome landscapes are attained. Recent 

studies have begun to elucidate mechanisms 

involved in histone transfer during replication 

and maturation of the nucleosome landscape 

after disruption by replication. A fuller 

understanding of replication-coupled 

nucleosome assembly will be needed to explain 

how epigenetic information is replicated at 

every cell division. We also give details about 

regulation of histone in human and the DNA 

Damage Response. 

 

Keywords:  Histone, Chromatin assembly, 

Histone replication, DNA damage response, 

Translation and transcription, Histone cycle. 

 

INTRODUCTION 

               As we know every time when cell 

divided to form a new cell then there is also 

DNA (Deoxyribose Nucleic Acid) material 

get equally distributed into that duplicate 

cells.
 [27]

 In this process DNA replication in 

cell varies proteins are used involved which 

are interact with each other.
 [38]

 Abnormally 

in any step of cell division leads to cell 

death and genetic instability leads to cause 

disease condition in human.
 [1]

 Each step of 

DNA replication is effectively regulated in 

the eukaryotic cells. One of the important 

feature is DNA strongly associated with 

histone which is a basic protein wrapped 

around the DNA consist octameric (8 units) 

basic proteins structure called nucleosomes.
 

[27,28]
 

The nucleosomes and associated 

DNA are commonly known as chromatin.
 

[27]
 Presence of nucleosomes is one of the 

major principle differences between 

eukaryotic and prokaryotic DNA replication 

cause change in whole chromatin structure.
 

[2]
 Since nucleosomes remove transiently 

chromatin remodeling depends upon 

assembly and disassembly of nucleosomes. 

This chromatin remodeling factors and 
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protein are able to destabilize interaction 

between histones and DNA. Hence, the 

destabilized reaction allows them to interact 

with other DNA complexes.
 [3] 

Nucleosomes 

are help in DNA packing during S-phase 

about 30 million nucleosomes are 

synthesized.
 [2] 

Histone production is 

coupled with DNA synthesis and shut off 

process when replication finishes. Histone 

regulation is important avoid histone 

accumulation of free histone chromatin is 

acts as structural barrier and also play 

important role in regulation.
 [39] 

 

 
Figure 1 : Histone Octamer[128] 

 

Histone replication in respect to 

chromatin: - 

Early stage influence of chromatin on 

replication of histone: - 

The replication of DNA requires 

series of proteins in initial stage in any 

organism. This series of proteins ultimately 

leads to loading two hexameric DNA 

helicases.
 [40]

 This protein starts unwinding 

of DNA which is required for replication. In 

eukaryotic cells pre-complex formed by two 

MCM-7 (Minichromosome Maintenance-7 

complex) binds to ORC (origin recognition 

complex) rings. 
[41] 

The formed complex is 

inactive in nature which is activated by Dbf4 

(Dumbell former-4 protein) dependent 

kinase (DDK) and cyclin dependent kinase 

(CDK). 
[4]

 DNA-replication takes place 

when DNA sequence contains nucleosome 

free region (NFR). 
[5,6,7,8] 

In drosophila 

follicle cells histones round’s origin of DNA 

replication initiations (ORIS) are hyper 

acetylated and change level of acetylation 

which affects on ORC binding. 
[9]

 

Methylation of histone H4 also helpful in 

ORC recruitment and promotes ORC 

binding by methyl transferase SET8. 
[10]   

When ORC bind to DNA protein 

CDC6 (Cell division cycle 6) and CDT 

(DNA replication factor), this helps to load 

two MCM2-7 helicases to DNA.
 [11] 

This 

influence by acetylation of H4 due to 

recruitment of histone acetyltransferase 

HBO to ORC by CPT1 (camptothecin 1) 

regulation of firing depends on MCM 

helicase activation by phosphorylation of 

some subunit by DDK and CDK kinase that 

allows CDC45 and GINS complex 

recruitments.
 [12,13,14] 

Once this all proteins 

loaded then replication starts. The spatial 

arrangement of chromatin helps to define 

replication domain.
 [15] 

The domain 

containing megabases of contiguous DNA 

that replicate early than others and this 

correlated with acetylation levels of H4.
 

[16,17]
 The recruitment and activity of 

replication machinery is influenced by 

chromatin is influenced by chromatin. When 

machinery fully set up then replication fork 

is progressed and DNA starts replicate after 

nucleosome displacement.
 [18]
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Figure 2 : Early Stage Chromatin Influence on Replication[132] 

 

Nucleosome arrangement around 

replication fork: - 

                 During progression of replication 

fork many proteins and DNA strongly 

interact with each other. 
[19,20] 

Chromatin is 

condensed before replication fork in 

mammalian cells. 
[21] 

This condensation 

process leads to increase mobility of histone 

H4 by cyclin A-CDK complete 

phosphorylation. 
[22] 

It is still not clear that 

nucleosome decondensed before replication 

is due to passage of replication machinery 

or chromatin remodeling. 
[3] 

Proteins are 

able to react with chromatin complete and 

make them unstable for transcription. After 

transcription they interact with DNA.
 [42]

 

The major two complexes involved in H2A 

and H2B displacement is FACT (facilitates 

chromatin transcription complex) and 

NAP1K (nucleosome assembly protein 

kinase) and for H3/H4 displacement ASF1 

and CAF1 present [in this N-terminal of 

both H2A and H2B binds with FACT to 

form complex with nucleosomes. The mid 

domain of nucleosomes attached with H3-H4 

tetramer [(CH3-CH4)2] to displace H2A-H2B 

dimer from nucleosomes. 
[43] 

During 

displacement the subunit of FACT complex 

i.e. Spt16 and SSRP (structure specific 

recognition protein), are play important role 

which shows indirect effect on nucleosome 

reorganization. 
[23,24] 

The other NAP 

(nucleosome assembly protein), complex 

shows disassembly of nucleosomes when it 

combined with RSC complex. 
[25,26] 

Asf1 and 

CAF1 combined to cause deposition of 

histone H3/H4 in passage of replication fork 

by binding with PCNA (Proliferating cell 

nuclear antigen), replication factor C and 

MCM helicase complex due to deposition of 

histone octamer DNA wrapped around 

nucleosome. 
[29,30] 

H3/H4 tetramer recycled 

after each DNA strand replication and new 

tetramer deposited over other strand of 

DNA. 
[31]

 CAF plays role in leading and 

lagging strand by PCNA. Depletion in CAF1 

cause decrease chromatin replication and 

increase DNA damage.
 [32,33] 

Finally, H1 

proteins cause chromatin compaction S-

phase progression.
 [34]

 Due to DNA 

polymerase polarity on 5`to3` lagging strand 

chromatin landscape occurs which generate 

short fragment of DNA known as okazaki 

fragment.
 [35]

 This fragment needs to be goes 

under process of maturation for that flap 

endonuclease (FEN1) and DNA ligase-1 

plays important roles. This enzyme cause 
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flap processing and ligation of okazaki fragments.
 [36,37] 

 

 
Figure 3 : Nuclosome Rearrangement around Replication Fork [129] 

 

Maturation of chromatin and centromere 

formation: - 

                When nucleosome attached to 

DNA there is two processes are takes place 

i.e. maturation of chromatin and centromere 

formation. Histone starts to take some place 

and causes modification before DNA 

reposition. 
[57]

 Newly formed chromatin is 

highly acetylated and it need to be 

deacetylate or methylated to reach compact 

state. 
[58] 

Deacetylation cause due to enzyme 

deacetylase and methylation cause due to 

enzyme DNA methyl transferase in 

compaction state other post-transcriptional 

modifications are happening and establish 

some epigenetic code transfer to daughter 

cells. 
[54,55] 

This epigenetic memory is 

important for differentiation. 
[56] 

All 

processes do not happen in replication some 

of also takes place in mitosis. Chromatin 

replication near centromere ensures 

segregation during mitosis. The 

heterochromatin named CENP-A 

(Centromere protein A) helps for binding 

kinetochore during mitosis. 
[59] 

Correct 

segregation leads to formation of spindle 

fibers. 
[53]

 The highly diversified protein 

called heterochromatin (CENP-A) replaces 

histone H3 at centromeric DNA. 
[51,52]

 This 

heterochromatin interspersed with canonical 

nucleosomes and promotes folding of 

chromatin during metaphase. 
[49] 

This 

formed complex allows kinetochore and 

microtubule attachment. 
[49] 

Heterochromatin positioned on centromeric 

chromatin during telophase after 

chromosome separation. 
[50]

 Defect in this 

process cause genetic instability, 

chromosome loss and cell death. 
[46,47,48] 

Several studies show that proper 

homeostasis between H3 and 

heterochromatin (CENP-A) is help for 

distribution of centromeric variant and 

chromosomal segregation. 
[44,45]

 

 

Histone regulation: - 

                Nucleosomes are more than 

structural bricks for DNA and cause 

modification on histone to maintain 

epigenetic state. Hence, DNA replication is 

interdependent on chromatin reorganization.
 

[61] 
Highly cell-cycle regulated genes are 

histone genes because cell generation needs 

high amount of histone replication.
 [60] 

The 
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histone mainly regulated by transcription, 

translation and post-transcription way but 

metabolism depends on organisms.
 [62,63] 

The 

bacterial species like s-cerevisiae shows 

transcriptional regulation.
 [64] 

While in the 

mammalian cells post-transcriptional and 

translational mechanism seen.
 [65]

 

 

1) Transcriptional regulation of histone: - 

                 It is most important in bacterial 

species i.e.  S. cerevisiae regulated in G1 

phase of cell cycle or life cycle.
 [66] 

In higher 

eukaryotic it happens all of histone stages.
 

[67] 
Histone expression must be 

stoichiometric if imbalance cause then it 

leads to deterioration of cell or disruption 

cell.
 [44,45,68] 

In S-phase replication 

expression increased by three to five folds.
 

[69]
 In each histone cluster consist at least 

five canonical histones. Which are well 

organized and co-ordinated octamer-binding 

transcription factor (OTF1) for H2B 

activates coding region sequence in H2A, H3 

and H4 genes.
 [70,71]

 

 

 
Figure 4 : Histone Modifications in Regulation[130] 

              

Nuclear protein ataxia-

telangiectasia’s (NPAT) is required for 

activation of histone gene for S-phase 

Progression. 
[72]

 NPAT locates next to 

histone locus bodies and undergoes 

phosphorylation by cyclin E-CDK2` and 

increase gene transcription. 
[73,74] 

Histone 

gene express and promotes upstream 

activating sequences (UAS) for recruitment 

of Spt10 and SBF. 
[75]

 Histone gene also 

consist negative regulatory site for 

replication under stress condition. 
[76,77,78] 

The HIR (histone regulator) complex 

responsible for transcription is formed by 

proteins named HIRA, ubinuclein1 and 

cabin1. The HIRA associated with 

chromatin assembly during transcription.
 [79] 

Overexpression of HIRA cause blockage of 

transcription in S-phase HIRA 

phosphorylated by cyclin E-CDK2 and 

cyclin A-CDK2.
 [80,81] 

 

2) Post-transcriptional and translational 

regulation of histones: - 

               Mammalian histone mRNA 

contains 3` UTR (untranslated region) 

sequence for loop formation but they lack o 

f introns and poly (A) tail.
 [69] 

The 

transcripted histone localize to cajal bodies 

which express NPAT and mature U7snRNA 

of histone locus bodies.
 [82] 

Maturation 

occurs after 3`end formation by 

endonucleolytic cleavage. This cleavage 

occurs between stem loop and histone 

downstream element (HDE).
 [83,84] 

This 

cleavage involved by specific proteins like 

SLBP, LSM1-11, U7snRNA and ZFP100.   

stem-loop binding protein (SLBP) is major 

protein for translation and post-transcription 

process for regulation of histones. SLBP is 

major protein known as cell cycle regulated 

protein accumulate in G1 phase and ends in 

S-phase. 
[85] 

SLBP helps to cleavage during 

mRNA maturation facilate circulation of 

histone and translated by polyribosomes and 

also increase histone mRNA stability and 

prevent histone degradation when DNA 

replication inhibits then SLBP also get 

degraded some of studies shows degradation 

of H2B transcript by some component of 

exosomes. 
[86,87,88]

 Length of poly (A) is 

cell-cycle dependent it decreases in G1 

phase and progress in S-phase and progress 

in S-phase to G2 phase. 
[89]

 

 

Regulation of histone by controlled level 

of protein: - 

            Studies shows that histone mRNA 

level controls the histone protein level.
 [90]

 

The regulation pathway involves action of 
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CHK2 and Rad53 which play important role 

in DNA damage response.
 [1,91] 

Degradation 

of histone involves rad53 action with E2 

ubiquitin ligases.
 [92] 

The mechanism of 

degradation involves phosphorylation of 

tyrosine and ubiquitylatin before proteolysis 

histone degradation does not involves 

kinases.
 [93] 

 

 

DNA damage response (DDR): coupling of DNA and synthesis of histone: - 

              

Figure 5 : DNA Damage Response Pathways [131] 

 

DDR is one of the most important 

checkpoint in cell damage when DNA sense 

damage.
 [101]

 DDR activation leads to action 

of kinase cascade which leads to correct the 

cell damage.
 [102] 

If DDR is not activated 

then cell damage will not repair and enters 

into apoptosis programs and after apoptosis 

cell will die.
 [94]

 Cell cycle involves proper 

functioning so that it maintains genome 

integrity and mutations in disease 

conditions. DDR can resist G1-phase s-

phase and G2 - Phase.
 [95] 

Two enzymes i.e. 

ATM (ataxia-telangiectasia mutated) and 

ATR kinase (ATM and Rad3-Related) are 

important in human cell and Tel1 and Mec1 

are important enzymes in bacteria S-

cerevisiae for activation of DDR. The ATM 

kinase directly involved in histone 

expression.
 [102,103] 

In human cells NPAT 

phosphorylation by cyclin E-CDK2 is 

required for human gene transcription. In S-

phase NPAT activation is important for 

histone expression.
 [72] 

Activation of ATM, 

P53 and P21 required for synthesis of histone 

upon DNA damage.
 [103]

 E-CDK2 complex 

activity resist by enzyme P21. Due to 

complex (cyclin E-CDK2) inhibition the 

enzyme NPAT is dephosphorylated and 

activates the transcription.
 [96] 

The histone 

repression cause by change in HIRA activity 

for or location damage of DNA strands also 

cause post-transcriptional degradation of 

histone mRNAs.
 [104] 

Histone m RNA 

undergoes oligouridylation while cell treat 

with hydroxyl urea (HU).
 [97] 

This 

oligouridylation of m RNA histone depends 

on UPF1 which binds to SLBP to recruit 3` 

terminal uridylyl transferase (TUT-ase). The 

3` oligo (U) tails triggers the Lsm1-7 

complex for progression of m RNA 

degradation by exosomes and Xrn1.
 [97] 

Rad53 pathway not directly plays as part of 

DDR but it could be important for important 

for destruction of translated histones. 

Studies shows that Asf1 and Rad53 plays 

important role in histone repression process.
 

[105] 
The stable complex of Asf1 and Rad53 is 

dissociate by phosphorylation due to Mec1  

phosphorylate in activation of DDR.
 [106] 

DNA repair involves DDR checkpoint 

activation and chromatin remodeling in 

which Asf1  plays crucial role. 
[98]

 The other 
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important enzyme named Rad53 can 

available in G1, G2 and M-phase in 

hypophosphorylated form which is depend 

on Cdc28 (A homologue of human CDK1 

and CDK2). HIR complex will leads to form 

precipitation with Asf1. This leads to 

nucleosomes assembly and DNA template. 
[99] 

Asf1 lacking in mRNA cause 

abnormalities in S-phase. 
[100] 

The 

dissociation of Asf1 – Rad53 complex is 

important in histone transcription. 
[105]

 

 

Free histone formation: - 

                During a normal cell cycle DNA 

replication is unbalance due to histone 

supply unbalancing.
 [114] 

There are two 

possible scenarios for histone supply in 

which first occurs due to difference between 

rate of DNA synthesis and supply of histone 

during DNA replication.
 [107,108]

 More 

replication forks are used in S-phase and 

also replication stress affect on speed of 

replication fork.
 [109,110,111,112] 

In second 

situation cell can use free histones during 

G2-phase of cell cycle. All free histones 

should be degrading after balanced ratio of 

histone H3 and CENPA cause finished 

replication by chromosomes segregation.
 

[104,116] 
So, here we can say that abnormality 

or imbalance of above two histone types (H3 

and CENPA) taken active participation in 

replication of cells which will lead to high 

incidence rate of chromosomes loss.
 [113]

 

 

Free histone transcription: - 

              Assemble and disassembly of 

nucleosomes is also required in transcription 

of chromatin template after passing of RNA 

polymerase II (RNA Pol-II). This 

transcripted chromatins are the main source 

of free histone formation. Due to imbalance 

between histone supply and demand the free 

histone amount is rises. The FACT complex 

is mainly involved in the transcription 

process along with RNA polymerase-II.
 

[116,117] 
FACT complex stimulates the 

enzyme RNA Pol-II for elongation process 

in transcription.
 [118,119,120,121,122] 

FACT 

complex linked with H3/H4 tetramer and 

H2A and H2B dimer shows integrity towards 

one of the subunit.
 [123,124] 

Spt16 is play 

important role in reassembly of H3 and H4 

histones.
 [125] 

Chromatin dysfunction cause 

generation of Spt16 proteins leads to free 

histone accumulation. This combined with 

Rad53K
227

A cause degradation of histone 

and increase the amount of free histones. 
[126] 

H2A-H2B expression causes suppression 

of this mutants (Rad53K
227

A) and promotes 

expression of H2A-H2B mutation of Spt16 

and histone level having correction. 
[126] 

The 

another protein factor called Spt6 is helping 

in H3-H4   reposition during transcription and 

having strong negative interaction with 

mutant i.e. Rad53K
227

A. free histones forms 

due to chromatin reassembly detects during 

transcription with involvement of Rad53   

which negatively interact with proteins 

involved in chromatin related processes. 
[127] 

Some of this factors are involved during 

chromatin related transcription processes. 
[127,126]

 
 

CONCLUSION 

  As we know the DNA is helpful for 

transmission of genetic information from 

one generation to another generation in the 

form of genomics or genetic code which 

having a particular sequence of genome in 

it. This topic highlights the histone cycle 

which is main protein in DNA transcription 

process. As we know the DNA is mainly 

found in eukaryotic organisms but it also 

found in some of the aracheabacterial 

species. (B. Thermophiles) which is the 

oldest colonies of bacteria living on earth. In 

this DNA forms a nucleoprotein complex 

called chromatin helps in compaction of 

genomic DNA in smaller space of nucleus. 

Hence, the chromatin works as a building 

block in nucleosome formation. The cell has 

its own unique and complex machinery to 

carried out various processes involving 

DNA needs to modify chromatin first. 

Chromatin mainly acts as a regulation 

machinery which carries epigenetic code 

which are important as one of contained of 

DNA in cell. In higher organisms with large 

and complex genome the particular cell 

require particular fraction of genome is 
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active. For this a brief passage of replication 

fork around replication coupled assembly is 

required. Histone synthesis is coupled to 

replication of genomic DNA and the 

existent of specific factor CAF-1 (chromatin 

activating factor-1) which targets newly 

synthesized histones to replicating DNA. 

The post-translational modifications and 

protein degradation may be involved in 

regulating the activity   CAF-1 in in a cell-

cycle-specific manner. Outside replication 

fork nucleosome assembly independent on 

histone H3 variant and replication-

independent pathways. Apart from an 

inherent of replication –coupled assembly to 

impose basal silencing, inheritance of post 

translationally modified histones at silent 

domains could play additional roles in 

maintenance of silent states. This topic also 

focuses on balance level of histones during 

chromatin formation and avoids deleterious 

effects due to generation of free histones. As 

a potential carrier of epigenetic information 

the recycling of parental histones after the 

passage of the replication fork is important 

for the inheritance of chromatin states. 

Recent structure studies revealed extensive 

details on the co-operation among replisome 

(responsible for unwinding of DNA & 

promotes replication) especially the co-

operation among the replicative helicase and 

DNA polymerase (DNA Pol-II). This 

evidence strongly supports replisome 

components that directly contribute into 

histone cycle. 
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