

 International Journal of Research & Review (www.ijrrjournal.com) 72

Vol.5; Issue: 6; June 2018

 International Journal of Research and Review
www.ijrrjournal.com E-ISSN: 2349-9788; P-ISSN: 2454-2237

Research Paper

MongoDB with Privacy Access Control

Swetha Siriah, Bhushan Deshpande, Deepak Asudani

Department of Computer Science, KITS College, RTMNU University, Nagpur, India.

Corresponding Author: Swetha Siriah

ABSTRACT

Space, Time and Privacy has become a key requirement for data management systems. The, NoSQL

data stores, namely highly compress data on non-relational database management systems, which

provides data management of internet user program, still do not provide support. It consists of the

enhancement of the MongoDB level based access protected model along with privacy keys for
security and monitor. The suggested system monitor is easily used for any MongoDB application

control with secured protection for data security.

Keywords: Purpose-based access control, Privacy, NoSQL, data stores, MongoDB.

INTRODUCTION

NoSQL datastores are developing

non-relational databases to provide high

security for database operations over several

servers. These platforms are getting

increasing attention by companies and

organizations for the ease and efficiency of

handling high volumes of heterogeneous

and even unstructured data. Although

NoSQL data stores can handle high volumes

of personal and sensitive information, up to

now the majority of these systems provide

poor privacy and security protection. Initial

research contributions started to studying

these issues, but they have mainly targeted

security aspects. As per your knowledge, we

did not found any work targeting privacy-

aware access control for No SQL systems,

but we believe that, similar to what has been

for privacy policies. With this work, we

begin to solve this issue, by proposing an

approach for the secured data purpose-based

policy capabilities into MongoDB, one of

the most popular No SQL data store.

Proposed for relational DBMSs, privacy-

aware access control is urgency for No SQL

data stores as well. However, where all

existent systems refer to the same data

model and query language which is different

from relational databases, No SQL data

stores operate with various languages and

data models. This variety makes the

definition of a general approach to have of

privacy-aware access control into NoSQL

datastores a very important goal. We believe

that a stepwise approach is necessary to

define such a general solution. As such, in

this, we start focusing on: 1) a single

datastore, and 2) selected rules for privacy

policies. We approach the problem by

focusing on MongoDB, which, according to

the DB-Engines Ranking, second ranks, as

the most popular NoSQL datastore.

MongoDB uses a document-oriented data

model. Data are modeled as documents,

namely records, possibly images collections

that are stored into a database. We analyzed

several privacy-aware access control models

proposed for relational DBMSs to identify

the characteristics of privacy policies to be

supported. In all the analyzed models

privacy policies require rule based and

enforcement mechanisms, as owners can

have different data and different privacy

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 73

Vol.5; Issue: 6; June 2018

requirements according to their policy on

data. The aim to have accessed with those

for which they are stored is considered as

the key required condition to grant the

access is thus the important of any privacy

policy. MongoDB is documents based

databases. Different from other relational

databases, arbitrary type data can be stored

in a document in MongoDB. However,

existing MongoDB products provide poor

privacy and security protection. In this, we

proposed a privacy access policy, by taking

some credential from user and encrypting it

which guarantee strong privacy for user

sensitive information and high performance

in MongoDB.

ANALYSIS AND DESIGN

 Recommendation of index type for

proposed indexes. Using frequent itemset as

a method to build a certain order of

combined indexes out of fields of each

frequent query. Use of query optimizer to

select the final recommended indexes. Our

approach to create virtual indexes which

removes any modification in the database.

Applying the approach to a document-based

NoSQL database. The typical setting

involves two user: one that gets information

from the other that is either to share the

requested information. Finally there is a

conflict between information sharing and

privacy. Were as the, sensitive data needs to

be kept confidential as the owners may be

willing, or forced, to share information.

Figure 1. Data Encrypted Key System

The general approach to the rule of

privacy-aware access control into NoSQL

data stores a very important goal. Users can

to execute for access purposes for which

they have a proper authorization. Purpose

authorizations are granted to users as well as

to roles. In the MongoDB data storage and

network transfer type for documents, simple

and fast. The important requirements

compulsory that the encryption keys must

be rotated and replaced with a new key at

least once annually. MongoDB can achieve

key rotation without incurring downtime by

performing rolling restarts of the replica set.

When using a appliance, the database files

themselves do not need to be re-encrypted,

thereby avoiding the significant

performance overhead imposed by key

rotation in other databases. Only the master

key is rotated, and the internal database key

store is re-encrypted.

IMPLEMENTATION DETAILS

Mongo DB stores its data in BSON.

The server has many databases, for each

database has a many of collections. They are

like tables in a relational store. We only

need a single collection to model our data. If

we were to query the Post collection from

the shell (after inserting some data), we'd

see BSON come back representing our data.

Data flow

Step 1: Start mongo server from command

prompt, go to bin directory where the

mongo server start the port. Then the

monog.exe will start the mongo server.

Step 2: At second step client will log using

user id and password in the system and

authenticate itself. Application server

checks the client is authorized or not and

grant permission to the client to access the

database.

Step 3: The step 3 provide two types of

access from where we can upload image

with access control and other types of file.

This also gives the access to admin panel.

Step 4: For image uploading the required

parameter is taken from client and by

applying algorithm the encrypted key is

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 74

Vol.5; Issue: 6; June 2018

generated. Then file breaks into chunks and

stored in mongo server.

Step 5: For insertion operation, application

server store the encrypted key for data into

one collection of database and retrieve the

encrypted key for data from another

collections from mongo database.

Step 6: For the other file format same steps

are repeated but these are directly converted

to document type.

This function returns a list of the

Mongo Picture Model objects retrieved

from the database. The thing we did

different here is use the Set Fields function

to reduce the fields we bring back. For the

gallery page we will only need the filename

and ids of the pictures and not the data.

First, _id is our identifier. While the

probably figured that out, you may not

know some of the ins and outs. _id will be

automatically generated if you don't provide

one. Since this record, a type of object

called an Object Id was used. This type is of

information on Mongo DB's web server,

which has all the client-side

implementations, including MongoDB-C

Sharp. MongoDB-C Sharp allow either your

own identifier, or you can use GUID type of

auto-generated identifiers also. Second, the

comments are stored as an array and stored

in right within the Post document. As

mentioned before, to have no need of

performing a join to get all the information

to need about a post, it is already a part of

the document. Recommendation of index

type for proposed indexes. Using frequent

itemset as a method to build a certain order

of combined indexes out of fields of each

frequent query. Use of query optimizer to

select the final recommended indexes. The

approach to create virtual indexes which

removes any modification in the database.

Applying the approach to a document-based

NoSQL database. The typical setting

involves two user: one that gets information

from the other that is either to share the

requested information.

Consequently, there is a tension

between information sharing and privacy.

On the one hand, sensitive data needs to be

kept confidential; on the other hand, data

owners may be willing, or forced, to share

information. The general technique to the

rule of privacy-aware access control is very

important objective in NoSQL data stores.

Users has the permission only to execute for

access purposes if they have a proper

authorization. Purpose authorizations are

granted to users as well as to roles. The data

storage and network transfer format for

documents, simple and fast. Sign and Rotate

Encryption Keys. Encryption keys for

network and disk encryption should be

periodically rotated. Encryption system are

use signed certificates to ensure that clients

can certify the credentials they receive from

server components. By default, the

encrypted parts of documents are

authenticated along with the id to prevent

copy/paste attacks by an attacker with

database write access. If you use above

options only part of your document is

encrypted, you might want to authenticate

the fields kept in clear text to prevent

tampering. For consider authenticating any

fields used for authorization. The purposes

for which data should be accessed only by

the authorized user is considered as the key

required condition to grant the access. Is

thus the important of any privacy policy. As

such, fine grained purpose-based policies

have been selected as the target policy type

for our proposal. MongoDB integrates based

access control model which supports user

and role management, and enforces access

control at collection level. However, no

support is provided for purpose-based

policies. This work extends MongoDB

RBAC with the support for purpose-based

policy specification and enforcement at

document level. More precisely, the rule

level at which the MongoDB RBAC model

operates, integrating the required support for

purpose related concepts. On top of this

enhanced model we have developed an

efficient enforcement monitor, which has

been designed to operate in any MongoDB

deployment. Within the client/server

architecture of a MongoDB deployment, a

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 75

Vol.5; Issue: 6; June 2018

MongoDB server front-end interacts,

through message exchange, with multiple

MongoDB clients. Mem operates as a proxy

in between a MongoDB server and its

clients, monitoring and possibly altering the

flow of messages that are exchanged by the

counterparts. Access control is forced by

MongoDB message rewriting. It, either

simply forwards the intercepted message to

the respective destination, or injects

additional messages that encode commands

or queries. In case the intercepted message

encodes a query, it writes it in such a way

that it can only access documents for which

the specified policies are satisfied. The

integration of data into a MongoDB

deployment is straightforward and only

requires a simple configuration. No

programming activity is required to system

administrators. Additionally, Meme has

been designed to operate with any

MongoDB driver and different MongoDB

versions. The experiments conducted on a

MongoDB server of realistic size have given

a low enforcement overhead which has

never compromised query usability.

RESULT AND DISCUSSION

Figure.2 Login window

When the first time user interacting

with the system this window will appear.

Figure. 2 show the login and registration

window used for the verification of the user.

If user is new then they have to register first

or else login using username and password,

through which authorized user are only

allowed.

The below Figure. 3 is used to

interface with multiple method to performs

different task, from here we can upload and

download image and different file format,

from here we can also access the admin

panel.

Figure. 3 Multiple Document Interface

A Multiple Document Interface

(MDI) programs can have many child

windows inside them. While in single

document interface (SDI) applications, one

document at a time can manipulate. Notepad

is an example of an SDI application and

visual Studio is an example of Multiple

Document Interface (MDI). MDI

applications have a Window menu item for

switching between windows or documents.

The below Fig.4 shows image form,

it requires the image credential and with the

help of algorithm it will generates the

encrypted key through which it provide the

access level for each file format. For image

uploading the required parameter take and

then applying algorithm the encrypted key is

generated through which the file chucks are

stored in mongo server.

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 76

Vol.5; Issue: 6; June 2018

Figure. 4 Image Selection Form

Figure.5 Image Saved Successfully

From bitmap file the Save Image

button code creates a FileStream object,

opens a connection with the database, adds a

new data row, set its values, and saves the

row back to the database. After the data has

been saved, the next step is to read data

from the database table, save it as a bitmap

again, and view the bitmap on the form. By

using the Graphics we can view an image.

Draw Image method or using a picture box.

The below Figure. 6 shows comparisons

between time required by MongoDB and

SQL. It shows MongoDB require less time

compare to SQL.

Figure.6 Image insertion comparative graph

This shows that when image is saved

in MongoDB in the form of chucks along

with security access level encrypted key

with password is calculated on the basis of

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 77

Vol.5; Issue: 6; June 2018

time required for it. Similarly the same file

is stored in SQL server which takes more

time without the encrypted key. The graph

show the execution time comparison

between the NoSQL and SQL system,

which proves that time require in NoSQL is

less than the time required by SQL server.

Since NoSQL stores the image in document

type format which requires the less time and

fast execution.

Figure.7 Image retrieval comparative graph

This figure 7 shows that when image

is retrieve from MongoDB server along with

security access level encrypted key with

password is calculated on the basis of time

required for it. Similarly the same file is

retrieve in SQL server takes more time

without the encrypted key. The graph shows

the execution time comparison between the

NoSQL and SQL system, which proves that

time require in NoSQL is less than the time

required by SQL server. Since NoSQL

stores the image in document type format

which requires the less time and fast

execution.

The other file format is stored in this

form, both upload and download function

are used. Create a user in MongoDB that

maps to a real user or application. The user

will be identified by a record in the user

account store in MongoDB and

authenticated to MongoDB with a password.

To create a user in MongoDB that uses

authentication, first create a user or system

administrator account - that is an account

that has permissions to create other user

accounts and typically the first account that

is created in your MongoDB instance for

system administrators. First connect to the

MongoDB instance using a mongo shell

specifying the name of the authentication

database

Figure. 8 Different File Format

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 78

Vol.5; Issue: 6; June 2018

Figure 9. Other file format retrieval comparative graph

This figure 9 shows that when other file

format is retrieve from MongoDB server

along with security access level encrypted

key with password is calculated on the basis

of time required for it. Similarly the same

file is retrieve in SQL server takes more

time without the encrypted key. The graph

shows the execution time comparison

between the NoSQL and SQL system,

which proves that time require in NoSQL is

less than the time required by SQL server.

Since NoSQL stores the other file format in

document type format which requires the

less time and fast execution.

CONCLUSION

The Purpose concepts and related

give mechanisms to regulate the access at

document level on the basis of purpose and

key based policies. An enforcement

monitor, has been designed to implement

the proposed security. It operates as a

between MongoDB user and a MongoDB

server, and enforces access control by

monitoring and possibly manipulating the

flow of exchanged messages. Furthermore,

we plan to generalize the presented

approach to the support for multiple NoSQL

datastores.

REFERENCES

 R. Agrawal, J. Kiernan, R. Srikant, and

Y. Xu. Hippocratic databases. In 28th

International Conference on Very Large

Data Bases (VLDB), 2002.

 K. Browder and M. A. Davidson. The

Virtual Private Database inOracle9iR2.

Technical report, 2002. Oracle

Technical White Paper.

 J. Byun and N. Li. Purpose based access

control for privacy protection in

relational database systems. The VLDB

Journal, 17(4), 2008.

 R. Cattell. Scalable SQL and NoSQL

Data Stores. SIGMOD Rec., 39(4):12–

27, May 2011.

 Cavoukian. Privacy by Design:

leadership, methods, and results. In S.

Gutwirth, R. Leenes, P. de Hert, and Y.

Poullet, editors, European Data

Protection: Coming of Age. Springer,

2013.

 F. Chang, J. Dean, S. Ghemawat, W. C.

Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system

for structured data. ACM Transactions

on Computer Systems (TOCS), 26(2):4,

2008.

 P. Colombo and E. Ferrari. Enforcement

of purpose based access control within

relational database management

systems. IEEE Transactions on

Knowledge and Data Engineering

(TKDE), 26(11), 2014.

 P. Colombo and E. Ferrari. Enforcing

obligations within relational database

Swetha Siriah et al. MongoDB with Privacy Access Control

 International Journal of Research & Review (www.ijrrjournal.com) 79

Vol.5; Issue: 6; June 2018

management systems. IEEE

Transactions on Dependable and Secure

Computing (TDSC), 11(4), 2014.

 P. Colombo and E. Ferrari. Efficient

enforcement of actionaware purpose-

based access control within relational

database management systems. IEEE

Transactions on Knowledge and Data

Engineering, 27(8), 2015.

 P. Colombo and E. Ferrari. Privacy

aware access control for big data: A

research roadmap. Big Data Research,

2015.

How to cite this article: Siriah S, Deshpande B, Asudani

D. MongoDB with privacy access

control. International Journal of Research and Review. 2018; 5(6):72-79.

