Research Paper

On Convergence Criteria for Sequences

Mohammed Nour A. Rabih^{1, 2}

¹Department of Mathematics- College of Science -University of BakhtEr-ruda- Eddwaim–Sudan ²Department of Mathematics- College of Science & Arts in OklatAlskoor - Qassim University - Saudi Arabia

ABSTRACT

In this paper we discuss the concept of convergence of real, complex and functions $\{f_n\}$ sequences, also we discuss the concept of sub-sequences. We presented the concept of convergence criteria for the sequences. First, we presented the cauchy criterion for convergence, and then we presented Weierstrass M-test for convergence and its some applications.

Key words: convergence – sequences - Weierstrass M-test-cauchy criterion

1. Sequences and Convergence

Definition 1.1. A sequence is a function ^[2,5] whose domain is N and whose codomainis \mathbb{R} . Given a function $f: N \to \mathbb{R}$, f(n) is the *n*th term in the sequence.

Example1.2. Let $x_n = \frac{1}{n}$. In this case, our function *f* is defined as

$$f(n) = \frac{1}{n}$$

As a listed sequence of numbers, this would look like the following:

$$\left(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\dots\right)$$

Definition1.3. A sequence of real numbers converges ^[1, 4] to a real number *a*if, forevery positive number ε , there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n - a| < \varepsilon$. We call such an *a*the limit of the sequence and write $\lim_{n \to \infty} a_n(x) = a$.

Definition1.4. A sequence $(f_n)_{n=1}^{\infty}$ of functions ^[4] on a subset *A* of \mathbb{R} into \mathbb{R} .

Definition1.5. (*Pointwise convergence*), ^[4] Let **D**be a subset of Rand let $\{f_n\}$ be a sequence of functions defined on *D*. We say that $\{f_n\}$ converges pointwise on **D**iflim_{$n\to\infty$} $f_n(x)$ exists for each point xin **D**. This means that $\lim_{n\to\infty} f_n(x)$ is a real number that depends only on x.

If $\{f_n\}$ is pointwise convergent then the function defined by

 $f(x) = \lim_{n \to \infty} f_n(x)$ for every xin **D**, is called the pointwise limit of the sequence $\{f_n\}$

Note: The notation $N = N(x, \varepsilon)$ means that the natural number N dependson the choice of x and ε .

Definition1.6. (Uniform convergence), ^[4, 5] Let **D** be a subset of \mathbb{R} and let $\{f_n\}$ be a sequence of realvalued functions defined on **D**. Then $\{f_n\}$ converges uniformly to f if givenany $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that $|f_n(x) - f(x)| < \varepsilon$ for every n > N and for every x in **D**.

Note: In the above definition the natural number N depends only on ε .

Therefore, uniform convergence implies pointwise convergence.

2. Subsequences Definition 2.1.

Let $\{a_n\}_{n\geq 1}$ be a sequence and $\{n_k\}_{k\geq 1}$ any strictly increasing sequence of positive integers; ^[2] that is,

 $0 < n_1 < n_2 < n_3 < \cdots$. Then the sequence $\{a_{n_k}\}_{k \ge 1}$, i.e., $\{b_k\}_{k \ge 1}$, where $b_k = a_{n_k}$, is called a subsequence of $\{a_n\}_{n \ge 1}$. That is, a subsequence is obtained by choosing terms from the original sequence, without altering the order of the terms, through the map $k \to n_k$, which determines the indices used to pick out the subsequence. For instance, $\{a_{7k+1}\}$ corresponds to the sequence of positive integers $n_k = 7k + 1, k = 1, 2, \ldots$

Observe that every increasing sequence $\{n_k\}$ of positive integers must tend to infinity, because

$$n_k \geq k \text{ for } k = 1, 2, \dots$$

The sequences
$$\left\{\frac{1}{k^2}\right\}_{k\geq 1}, \left\{\frac{1}{2k}\right\}_{k\geq 1}, \quad \left\{\frac{1}{2k+1}\right\}_{k\geq 1}, \quad \left\{\frac{1}{5k+3}\right\}_{k\geq 1}, \\ \left\{\frac{1}{2^k}\right\}_{k>1}$$

are some subsequences ^[2] of the sequence $\{1/k\}_{k>1}$, formed by setting $n_k =$ k^2 , 2k, 2k + 1, 5k + 3, 2^k, respectively. that Note all the abovesubsequences converge to the same limit, which is also the limit of the original sequence $\{1/k\}_{k>1}$. Can we conjecture that subsequence of a convergent every sequence must converge and converge to the same limit?

Theorem 2.2. (Invariance property of subsequences).^[2]

If $\{a_n\}$ converges, then every subsequence $\{a_{n_k}\}$ of it converges to the same limit. Also, if $a_n \to \infty$, then $\{a_{n_k}\} \to \infty$ as well.

Proof. Suppose that $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$. Note that $n_k \ge k$. Let $L = \lim a_n$ and $\varepsilon > 0$ be given. Then there exists an Nsuch that

 $|a_k - L| < \varepsilon \text{ for } k \ge N.$ (1) Now $k \ge N$ implies $n_k \ge N$, which in turn implies that

 $|a_{n_k} - L| < \varepsilon \text{ for } n_k \ge N.(2)$

Thus, a_{n_k} converges to *L* as $k \to \infty$. The proof of the second partfollowssimilarly.

Corollary2.3. The sequence $\{a_n\}$ is divergent ^[4] if it has two conv-ergent subsequences with different limits. Also, $\{a_n\}$ is divergent if it has a subsequencethat

tends to ∞ or a subsequence that tends to $-\infty$.

Theorem2.4. A sequence is convergent if and only if there exists a real number L such that every subsequence of the sequence has a further subsequencethat converges to L.

Corollary2.5. If both odd and even subsequences of $\{a_n\}$ converge to thesame limit *l*, then so does the original sequence.

Note that $\{(-1)^n\}$ diverges, because it has two subsequences $\{(-1)^{2n}\}$ and $\{(-1)^{2n-1}\}$ converging to two different limits, namely 1 and -1.

3. Complex Sequences

Let $\{z_n\}$ be a sequence of complex numbers ^[3] and let $z \in \mathbb{C}$. We say that $\{z_n\}$ converges to zand write $z_n \rightarrow z$ (or $\lim z_n = z$ etc.) if for every positive real number $\varepsilon > 0$, there exists anatural number N such that

 $n \ge N \Rightarrow |z_n - z| < \varepsilon$ **Theorem 3.1.** Let $z_n = x_n + iy_n$. (i) $z_n \to z \Rightarrow x_n \to \Re z, y_n \to \Im y$ (ii) $x_n \to x, y_n \to y \Rightarrow z_n \to x_n + iy_n$ *Proof.* (i) Put $x_n = \Re z$. $|x_n - X| =$ $\Re(z_n - z) \le |z_n - z|$. So given $\varepsilon > 0$ use the same N.

(ii) $|z_n - z| \le |x_n - x| + |y_n - y|$ by Δ law

Find N_1 to ensure first term is less than $\varepsilon/2$, and N_2 to ensure second is less than $\varepsilon/2$ then use $N := min(N_1, N_2)$.

4. Convergence criteria for sequences

I. Cauchy criterion

Definition 4.1. ^[3] The real sequence a_n converges to something if and only if this holds: for every $\varepsilon > 0$ there exists N such that $|a_n - a_m| < \varepsilon$ whenever n, m > N. This is necessary and sufficient.

To prove one implication: Suppose the sequence a_n converges, ^[2] say to a. Then by definition, for every $\varepsilon > 0$ we can find N such that

 $|a - a_n| < \varepsilon$ whenever n > N. But then if we are given $\varepsilon > 0$ we can find *N* such that $|a - a_n| < \varepsilon/2$ for n > N, and then

 $|a_n - a_m| = |(a_n - a) - (a_m - a)| <$

 $|a_n - a| + |a_m - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$ (3) for m, n > N.

To prove the other: Suppose the criterion ^[3] holds. We know that we have a subsequence a_{n_i} which converges some *a*. I claim that in fact the whole sequence converges to this same *a*. We know that for any $\varepsilon > 0$

we can find N_1 such that $|a_{n_i} - a| < \varepsilon$ for $i \ge N_1$. We also know that if we are given $\varepsilon > 0$ we can find K_2 such that $|a_n - a_m| < \varepsilon$ for $m \ge N_2$.

Now we want to prove that for any $\varepsilon > 0$ we can find N such that $|a_n - a| < \varepsilon$ for $n \ge N$.

First choose N_1 such that $|a - a_{n_i}| < \varepsilon/2$ for $i \ge N_1$. Second, choose N_2 such that $|a_n - a_m| < \varepsilon/2$ (4)

for $m, n \ge N_2$. Suppose $n \ge N_2$. Choose some a_{n_i} with both $n_i \ge N_2$ and $i \ge N_1$. Then

$$|a_n - a| = |(a_n - a_{n_i}) + (a_{n_i} - a)| \le |a_n - a_{n_i}| + |a_{n_i} - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$
(5)

Now Suppose $\{z_n\}$ is a sequence of complex numbers ^[3] for $n \in \mathbb{N}$. Then $\{z_n\}$ converges if and only if for any $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ an such that $|z_n - z_m| < \varepsilon$ for every $m, n \in \mathbb{Z}$ such that m > n > N.

Any sequence that satisfies the Cauchy Criterion ^[3] is known as a Cauchy sequence. The above theorem also shows that every convergent sequence is Cauchy, and every Cauchy sequence is convergent.

Corollary 4.2.

If $\{z_n\}$ is a Cauchy sequence ^[2, 3] that converges to z, and N is chosen such that $|z_n - z_m| < \varepsilon$ for every $n, n \in \mathbb{Z}$ such that m > N, n > N, then for each, n > N $|z_n - z| < \varepsilon$. *Proof:*

This proof is rather straightforward. Let $m \to \infty$ in the inequality $|z_n - z_m| < \varepsilon$. It follows from this that $|z_n - z| \le \varepsilon$.

Corollary4.3.

The series $\sum_{k=0}^{\infty} a_k$ converges ^[2] if and only if for any $\varepsilon > 0$ there exists an N such that $|\sum_{k=n+1}^{m} a_k| < \varepsilon$ for every $m, n \in \mathbb{Z}$ such that m > n > N

Definition 4.4. A sequence (f_n) of functions $f_n : A \to \mathbb{R}$ is uniformly Cauchyon *A*if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

m, n > N implies that $|f_m(x) - f_n(x)| < E$ for all $x \in A$.

The key part of the following proof is the argument to show that a pointwise convergent, uniformly Cauchy sequence converges uniformly.

Theorem 4.5. A sequence (f_n) of functions $f_n : \mathbf{A} \to \mathbb{R}$ converges uniformly on \mathbf{A} if and only if it is uniformly Cauchy on \mathbf{A} .

Proof. Suppose that (f_n) converges uniformly, ^[4] to f on A. Then, given

 $\mathcal{E} > 0$, there exists $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \mathcal{E}/2$ for all $x \in A$ if

n > N. It follows that if m, n > N then

 $|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_n(x)| < E$ for all

 $x \in A$,

which shows that (f_n) is uniformly Cauchy. [3,4]

Conversely, suppose that (f_n) is uniformly Cauchy. Then for each

 $x \in A$, thereal sequence ^[2,5] $(f_n(x))$ is Cauchy, so it converges by the completeness of \mathbb{R} . We define $f : A \to \mathbb{R}$ by

 $f(x) = \lim_{n \to \infty} fn(x), (6)$

and then $f_n \rightarrow f$ pointwise.

To prove that $f_n \to f$ uniformly, let $\mathcal{E} > 0$. Since (f_n) is uniformly Cauchy, we can choose $N \in \mathbb{N}$ (depending only on \mathcal{E}) such that

 $|fm(x) - fn(x)| < \mathcal{E}/2$ for all $x \in A$ if m, n > N.

Let n > N and $x \in A$. Then for every m > N we have

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \mathcal{E}/2 + |f_m(x) - f(x)|.$$

Since $f_m(x) \to f(x)$ as $m \to \infty$, we can choose m > N(depending on x, but itdoesn't matter since mdoesn't appear in the final result) such that

 $|f_m(x) - f(x)| < \mathcal{E}/2$ It follows that if n > N, then $|f_n(x) - f(x)| < \varepsilon$ (7) for all $x \in A$, which proves that f is a functionally

which proves that $f_n \to f$ uniformly. Alternatively, we can take the limit as $m \to \infty$ in the Cauchy condition to getfor all $x \in A$ and n > N that $|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \le \varepsilon/2 < \varepsilon$ (8)

II. Weierstrass M-test

Theorem4.6. (*WeierstrassM-test*)^[5]

Suppose $\{f_k\}$ is a sequence of real- or complex-valued functions ^[3] on some set E. Also, suppose that $\sum_{k=0}^{\infty} M_k$ is a convergent series where M_k are real non-negative terms. If $|f_k(z)| \leq M_k$ for all k greater than some number N and for all z in some set E, then it follows that the series $\sum_{k=0}^{\infty} f_k$ converges uniformly on E.

Proof:

Since $\sum_{k=0}^{\infty} M_k$ is Cauchy, we can choose a number M > N such that for any m and n that satisfy m > n > M we get that $\sum_{k=n+1}^{m} M_k < \varepsilon$. Then we see that for z in the set E that our series $\sum_{k=0}^{\infty} f_k(z)$ is also Cauchy, since

 $|\sum_{k=n+1}^{m} f_k(z)| \le \sum_{k=n+1}^{m} |f_k(z)| \le \sum_{k=n+1}^{m} M_k < \varepsilon$ (10)

Therefore, $\sum_{k=0}^{\infty} f_k(z)$ converges for every $z \in \mathbf{E}$. Let us say that $\sum_{k=0}^{\infty} f_k(z)$ converges to the function F(z).

Now, we want to show that $\sum_{k=0}^{\infty} f_k(z)$ converges uniformly to F(z). Observe that we can rewrite

$$\left|\sum_{k=n+1}^{m} f_k(z)\right| \leq \sum_{k=n+1}^{m} |f_k(z)| \leq \sum_{k=n+1}^{m} M_k < \varepsilon$$

in terms of partial sums

$$\begin{split} |\sum_{k=0}^{m} f_k(z) - \sum_{k=0}^{n} f_k(z)| &< \varepsilon \ (11) \\ \text{for all } z \in E, \text{ and where} m > n > N \text{ . Then} \\ \text{applying Corollary (3.4) of the Cauchy} \\ \text{Criterion, we see that} \\ |F(z) - \sum_{k=0}^{n} f_k(z)| &\leq \varepsilon \ (12) \end{split}$$

For $z \in E$, and where m > n > N. Thus, the uniform convergence is shown.

Theorem4.7. (*Comparison test*)^[2]

Suppose we have the terms a_k such that $|a_k| \le M_k$ for all $k \in \mathbb{Z}$, k > N for some number N. Then if the series $\sum_{k=0}^{\infty} M_k$ converges, the series $\sum_{k=0}^{\infty} a_k$ converges as well.

Since we know some of the ideas behind the Weierstrass M-Test, ^[5] we can now begin to look at some of its applications. We will first consider an *application* of the Weierstrass M-Test in the set of \mathbb{R} , before moving into applications within the set of \mathbb{C} . **Example4.8**.

Show that the real-valued series

$$\sum_{k=1}^{\infty} \frac{1}{4^k} \sin\left(\frac{k}{3^k}\right)$$

is uniformly convergent.

The WeierstrassM-Test ^[5] gives us the ability to show this without considering any limits. First, we observe that for any $x \in \mathbb{R}$, $\left|\sin\left(\frac{k}{3^k}\right)\right| \leq 1$ for all k. Then it is easy to see that $\left|\frac{1}{4^k}\sin\left(\frac{k}{3^k}\right)\right| \leq \frac{1}{4^k}$. So now let $M_k = \frac{1}{4^k}$.

Now we want to show that the series $\sum_{k=1}^{\infty} \frac{1}{4^k}$ (our series $\sum_{k=1}^{\infty} M_k$) is convergent. This series $\sum_{k=0}^{\infty} \frac{1}{4^k}$ converges to $\frac{1}{3}$ by the following Lemma.

Lemma 4.9.

The series $\sum_{k=0}^{\infty} a^k$ converges to $\frac{1}{1-a}$ if |a| < 1.

So we now have
$$\sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{4}{3} = 1 + \sum_{k=1}^{\infty} \frac{1}{4^k} = 1 + \frac{1}{3}$$
. Hence $\sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{1}{3}$, (our series $\sum_{k=1}^{\infty} M_k = \frac{1}{3}$). Now by the Weierstrass M-Test we see the series $\sum_{k=1}^{\infty} \frac{1}{4^k} \sin\left(\frac{k}{3^k}\right)$ is uniformly convergent on \mathbb{R}

Now to consider an *application* of the Weierstrass M-Test in the set of \mathbb{C} .

Example 4.10.

Show that the exponential function f(z) = e^{z} is uniformly convergent ^[1,4] on any bounded set $S \subset \mathbb{C}$.

Recall that e^{z} can be rewritten as the series $\sum_{k=0}^{\infty} \frac{z^k}{k!}$. Now we will show that this series is uniformly on some disk D of radius rcentered at the origin. To show this we must find some M_k such that $\left|\frac{z^k}{k!}\right| \le M_k$ for all $z \in \boldsymbol{D}$. Recall that $|z^k| \leq |z|^k$, and that $|z| \in \mathbb{R}$. So let $|z| < r \in \mathbb{R}$. Then it follows that $\left|\frac{z^k}{k!}\right| \le \frac{|z|^k}{k!} \le \frac{r^k}{k!}$. We see that $\frac{r^k}{k!} \in \mathbb{R}$, so now let $M_k = \frac{r^k}{k!}$. We may be able to *apply* the Weierstrass M-Test, [5] if we can show that the series

 $\sum_{k=0}^{\infty} M_k$ converges. If we use the (*Ratio Test*), ^[2] we can prove that $\sum_{k=0}^{\infty} M_k$ is convergent. So now recall:

III. Ratio Test:

^[2] Given a series $\sum_{k=0}^{\infty} a_k$, find $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L \ (13)$

If L > 1, the series diverges If L < 1, the series converges

If L = 1 or the limit fails to exist, then the test is inconclusive.

So now we see that

So now we see that $\lim_{k \to \infty} \left| \frac{M_{k+1}}{M_k} \right| = \lim_{k \to \infty} \frac{\frac{r^{k+1}}{(k+1)!}}{\frac{r^k}{k!}} = \lim_{k \to \infty} \frac{r}{r+1} = 0.$ Thus by the (Ratio Test)we see that the series $\sum_{k=0}^{\infty} M_k$ converges. Then by the Weierstrass M-Test we see that $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ Is uniformly convergent on some disk **D** of radius **D** centered at the origin.

REFERENCES

- 1. R.M. Dudley, sequential on convergence. Trans. Amer. Math. Soc. 112 (1964), 483-507.
- 2. Walter Rudin. **Principles** of Mathematical Analysis. McGraw-Hill Inc. 1976.
- 3. Ash, R. B., & Novinger, W. P. (n.d.). Complex analysis. Illinois: University of Illinois at Urbana-Champaign, Dept. of mathematics. Retrieved April 14, 2009,
- 4. Zbigniew Grande. On the almost monotone convergence of sequences of continuous functions. Eur. J. Math. 9(4) . 2011.772-777
- 5. Stephen Abbott. **Understanding** Analysis. Springer. 2015.

How to cite this article: Mohammed Rabih NA. On convergence criteria for sequences. International Journal of Research and Review. 2017; 4(5):87-91.
