Research Paper

On Convergence Criteria for Sequences

Mohammed Nour A. Rabih1, 2

¹Department of Mathematics- College of Science -University of BakhtEr-ruda- Eddwaim–Sudan ²Department of Mathematics- College of Science & Arts in OklatAlskoor - Qassim University - Saudi Arabia

ABSTRACT

In this paper we discuss the concept of convergence of real, complex and functions $\{f_n\}$ sequences, also we discuss the concept of sub-sequences. We presented the concept of convergence criteria for the sequences. First, we presented the cauchy criterion for convergence, and then we presented Weierstrass M-test for convergence and its some applications.

Key words: convergence – sequences - Weierstrass M-test-cauchy criterion

1. Sequences and Convergence

Definition 1.1. A sequence is a function **[\[2](#page-4-0)[,5\]](#page-4-1)** whose domain is *N* and whose codomainis ℝ. Given a function $f: N \to \mathbb{R}$, $f(n)$ is the nth term in the sequence.

Example1.2. Let $x_n = \frac{1}{n}$ $\frac{1}{n}$. In this case, our function f is defined as

$$
f(n) = \frac{1}{n}
$$

As a listed sequence of numbers, this would look like the following:

$$
\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots \dots \right)
$$

Definition1.3. A sequence of real numbers converges $\left[1, 4\right]$ $\left[1, 4\right]$ $\left[1, 4\right]$ to a real number *aif*, forevery positive number ε , there exists an $N \in$ N such that for all $n \geq N$, $|a_n - a| < ε$. We call such an *a*the limit of the sequence and write $\lim_{n\to\infty} a_n(x) = a$.

Definition1.4. A sequence ∞[∞]_{n=1}of functions ^{[\[4\]](#page-4-3)} on a subset**A** ofℝ into ℝ.

Definition1.5. (*Pointwise convergence*), **[\[4\]](#page-4-3)** Let **D**be a subset of Rand let $\{f_n\}$ be a sequence of functions defined on D . We say that $\{f_n\}$ converges pointwise on **D**iflim_{n→∞} $f_n(x)$ exists for each point xin \boldsymbol{D} .

This means that $\lim_{n\to\infty} f_n(x)$ is a real number that depends only on x .

If ${f_n}$ is pointwise convergent then the function defined by

 $f(x) = \lim_{n \to \infty} f_n(x)$ for every xin **D**, is called the pointwise limit of the sequence $\{f_n\}$

Note: The notation $N = N(x, \varepsilon)$ means that the natural number Ndependson the choice of x and ε .

Definition1.6. (*Uniform convergence*), **[\[4,](#page-4-3) [5\]](#page-4-1)** Let **D** be a subset of ℝ and let $\{f_n\}$ be a sequence of realvalued functions defined on **D**. Then $\{f_n\}$ converges uniformly to f if givenany $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that $|f_n(x) |f(x)| < \varepsilon$ for every $n > N$ and for every x in \boldsymbol{D} .

Note: In the above definition the natural number N depends only on ε .

Therefore, uniform convergence implies pointwise convergence.

2. Subsequences Definition 2.1.

Let ${a_n}_{n \geq 1}$ be a sequence and ${n_k}_{k \geq 1}$ any strictly increasing sequence of positive integers; $\frac{[2]}{[2]}$ $\frac{[2]}{[2]}$ $\frac{[2]}{[2]}$ that is,

 $0 < n_1 < n_2 < n_3 < \cdots$

Then the sequence $\{a_{n_k}\}_{k\geq 1}$, i.e., $\{b_k\}_{k\geq 1}$, where $b_k = a_{n_k}$, is called a subsequence of ${a_n}_{n \geq 1}$. That is, a subsequence is obtained by choosing terms from the original sequence, without altering the order of the terms, through the map $k \to n_k$, which determines the indices used to pick out the subsequence.For instance, ${a_{7k+1}}$ corresponds to the sequence of positive $integers n_k = 7k + 1, k = 1, 2, \ldots$

Observe that everyincreasing sequence ${n_k}$ } of positive integers must tend to infinity, because

 $n_k \geq k$ for $k = 1, 2, ...$ The sequences $\left\{\frac{1}{\sqrt{2}}\right\}$ $\frac{1}{k^2}\bigg\}_{k\geq 1}, \frac{1}{2k}$ $\frac{1}{2k}\bigg\}_{k\geq 1}, \quad \left\{\frac{1}{2k}\right\}$ $\left\{\frac{1}{2k+1}\right\}_{k\geq 1}, \quad \left\{\frac{1}{5k-1}\right\}$ $\frac{1}{5k+3} \bigg\}_{k \geq 1}$, $\left\{\frac{1}{2}\right\}$ $\frac{1}{2^k}\Big\}_{k \geq 1}$

are some subsequences $^{[2]}$ $^{[2]}$ $^{[2]}$ of the sequence $\{1/k\}_{k\geq 1}$, formed by setting $n_k =$ k^2 , 2k, 2k + 1, 5k + 3, 2^k , respectively. Note that all \bullet the abovesubsequencesconverge to the same limit, which is also the limit of the original sequence $\{1/k\}_{k\geq 1}$. Can we conjecture that every subsequence of a convergent sequence must converge and converge to the same limit?

Theorem 2.2. (*Invariance property of subsequences*). **[\[2\]](#page-4-0)**

If ${a_n}$ converges, then every subsequence ${a_{n_k}}$ of it converges to the same limit. Also, if $a_n \to \infty$, then $\{a_{n_k}\} \to \infty$ as well.

Proof. Suppose that $\{a_{n_k}\}\$ is a subsequence of $\{a_n\}$. Note that $n_k \geq k$. Let $L = \lim a_n$ and $\varepsilon > 0$ be given. Then there exists an N such that

 $|a_k - L| < \varepsilon$ for $k \ge N$. (1) Now $k \geq N$ implies $n_k \geq N$, which in turn implies that

 $|a_{n_k} - L| < \varepsilon$ for $n_k \ge N$. (2)

Thus, a_{n_k} converges to L as $k \to \infty$. The proof of the second partfollowssimilarly.

Corollary2.3. The sequence $\{a_n\}$ is divergent **[\[4\]](#page-4-3)** if it has two conv-ergent subsequences with different limits. Also, ${a_n}$ is divergent if it has a subsequence that

tends to ∞ or a subsequence that tends to −*∞*.

Theorem2.4. A sequence is convergent if and only if there exists a real number L such that every subsequence of the sequence has a further subsequence that converges to L .

Corollary2.5. If both odd and even subsequences of $\{a_n\}$ converge to the same limit l , then so does the original sequence.

Note that $\{(-1)^n\}$ diverges, because it has two subsequences $\{(-1)^{2n}\}$ and $\{(-1)^{2n-1}\}$ converging to two different limits, namely 1 and -1 .

3. Complex Sequences

Let $\{z_n\}$ be a sequence of complex numbers $^{[3]}$ $^{[3]}$ $^{[3]}$ and let $z \in \mathbb{C}$. We say that $\{z_n\}$ converges to zand write $z_n \to z$ (or $\lim z_n = z$ etc.) if for every positive real number $\varepsilon > 0$, there exists anatural number N such that

 u_{h} . $n \geq N \Rightarrow |z_n - z| < \varepsilon$ **Theorem 3.1.** Let $z_n = x_n + iy_n$. (i) $z_n \to z \Rightarrow x_n \to \Re z, y_n \to \Im y$ (ii) $x_n \rightarrow x$, $y_n \rightarrow y \Rightarrow z_n \rightarrow x_n + iy_n$ *Proof.* (i) Put $x_n = \Re z$. $|x_n - X|$ = $\Re(z_n - z) \leq |z_n - z|$. So given $\varepsilon > 0$ use the same N .

 $(ii)|z_n - z| \le |x_n - x| + |y_n - y|$ by ∆ law

Find N_1 to ensure first term is less than $\varepsilon/2$, and N_2 to ensure second is less than $\varepsilon/2$ then use $N := min(N_1, N_2)$.

4. Convergence criteria for sequences

I. Cauchy criterion

Definition4.1. ^{[\[3\]](#page-4-4)} The real sequence a_n converges to something if and only if this holds: for every $\varepsilon > 0$ there exists N such that $|a_n - a_m| < \varepsilon$ whenever $n, m >$.This is necessary and sufficient.

To prove one implication: Suppose the sequence a_n converges, ^{[\[2\]](#page-4-0)} say to \overline{a} . Then by definition, for every $\varepsilon > 0$ we can find N such that

 $|a - a_n| < \varepsilon$ whenever $n > N$. But then if we are given $\varepsilon > 0$ we can find N such that $|a - a_n| < \varepsilon/2$ for $n > N$, and then

 $|a_n - a_m| = |(a_n - a) - (a_m - a)|$

 $|a_n - a| + |a_m - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$ (3) for $m, n > N$.

To prove the other: Suppose the criterion **[\[3\]](#page-4-4)** holds. We know that we have a subsequence a_{n_i} which convergesto some a. I claim that in fact the whole sequence converges to this same *a*. We know that for any $\varepsilon > 0$

we can find N_1 such that $|a_{n_i} - a| < \varepsilon$ for $i \geq N_1$. We also know that if we are given $\varepsilon > 0$ we can find K_2 such that $|a_n$ a_m | < ε for , $m \geq N_2$.

Now we want to prove that for any $\varepsilon > 0$ we can find N such that $|a_n - a| < \varepsilon$ for $n \geq N$.

First choose N_1 such that $|a - a_{n_i}| < \varepsilon/2$ for $i \geq N_1$. Second, choose N_2 such that $|a_n - a_m| < \varepsilon/2$ (4)

for $m, n \geq N_2$. Suppose $n \geq N_2$. Choose some a_{n_i} with both $n_i \geq N_2$ and $i \geq N_1$. Then $10eP$

$$
|a_n - a| = |(a_n - a_{n_i}) + (a_{n_i} - a)| \le
$$

$$
|a_n - a_{n_i}| + |a_{n_i} - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon
$$

(5)

Now Suppose $\{z_n\}$ is a sequence of complex numbers ^{[\[3\]](#page-4-4)} for $n \in \mathbb{N}$. Then $\{z_n\}$ converges if and only if for any $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ an such that $|z_n - z_m| < \varepsilon$ for every $m, n \in \mathbb{Z}$ such that $m > n > N$.

Any sequence that satisfies the Cauchy Criterion^{[\[3\]](#page-4-4)} is known as a Cauchy sequence. The above theorem also shows that every convergent sequence is Cauchy, and every Cauchy sequence is convergent.

Corollary 4.2.

If $\{z_n\}$ is a Cauchy sequence $\begin{bmatrix} 2, & 3 \end{bmatrix}$ that converges to z , and N is chosen such that $|z_n - z_m| < \varepsilon$ for every $m, n \in \mathbb{Z}$ such that $m > N, n > N$, then for each, $n > N$ $, |z_n - z| < \varepsilon$. *Proof:*

This proof is rather straightforward. Let $m \to \infty$ in the inequality $|z_n - z_m| < \varepsilon$. It follows from this that $|z_n - z| \leq \varepsilon$.

Corollary4.3.

The series $\sum_{k=0}^{\infty} a_k$ converges ^{[\[2\]](#page-4-0)} if and only if for any $\varepsilon > 0$ there exists an N such that $|\sum_{k=n+1}^m a_k| < \varepsilon$ for every $m, n \in \mathbb{Z}$ such that $m > n > N$

Definition 4.4. A sequence (f_n) of functions $f_n : A \to \mathbb{R}$ is uniformly Cauchyon Aif for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

 $m, n > N$ implies that $| f_m(x) - f_n(x)|$ *E* for all $x \in A$.

The key part of the following proof is the argument to show that a pointwise convergent, uniformly Cauchy sequence converges uniformly.

Theorem 4.5. A sequence (f_n) of functions $f_n: A \to \mathbb{R}$ convergesuniformly on A if and only if it is uniformly Cauchy on A .

Proof. Suppose that (f_n) converges uniformly, $\left[\begin{matrix}4\\1\end{matrix}\right]$ to f on **A**. Then, given

 $\mathbb{E} \geq 0$, there exists $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \mathcal{E}/2$ for all $x \in \mathcal{A}$ if $n > N$.

It follows that if $m, n > N$ then

$$
|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_n(x)| < E
$$
\nfor all

 $x \in A$,

which shows that (f_n) is uniformly Cauchy. **[\[3](#page-4-4)[,4\]](#page-4-3)**

Conversely, suppose that (f_n) is uniformly Cauchy. Then for each

 $x \in A$, thereal sequence $\left[2,5\right]$ $\left[2,5\right]$ $\left[2,5\right]$ $(f_n(x))$ is Cauchy, so it converges by the completeness of ℝ. Wedefine $f : A \rightarrow \mathbb{R}$ by

 $f(x) = lim_{n\to\infty}fn(x)$, (6)

and then $f_n \rightarrow f$ pointwise.

To prove that $f_n \to f$ uniformly, let $\mathcal{E} > 0$. Since (f_n) is uniformly Cauchy, wecan choose $N \in \mathbb{N}$ (depending only on \mathcal{E}) such that

 $|fm(x) - fn(x)| < \mathcal{E}/2$ for all $x \in Air$ $m, n > N$.

Let $n > N$ and $x \in A$. Then for every $m > N$ we have

$$
|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \mathcal{E}/2 + |f_m(x) - f(x)|.
$$

Since $f_m(x) \to f(x)$ as $m \to \infty$, we can choose $m > N$ (depending on x, but itdoesn't matter since mdoesn't appear in the final result) suchthat

 $|f_m(x) - f(x)| < \mathcal{E}/2$ It follows that if $n > N$, then $|f_n(x) - f(x)| < \varepsilon(7)$ for all $x \in A$,

which proves that $f_n \to f$ uniformly. Alternatively, we can take the limit as $m \rightarrow \infty$ in the Cauchy condition to getfor all $x \in A$ and $n > N$ that $|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \le \varepsilon/2 < E(8)$

II. Weierstrass M-test

Theorem4.6. (*WeierstrassM-test*) **[\[5\]](#page-4-1)**

Suppose $\{f_k\}$ is a sequence of real- or complex-valued functions $^{[3]}$ $^{[3]}$ $^{[3]}$ on some set \bm{E} . Also, suppose that $\sum_{k=0}^{\infty} M_k$ is a convergent series where M_k are real non-negative terms. If $|f_k(z)| \leq M_k$ for all k greater than some number N and for all z in some set \vec{E} , then it follows that the series $\sum_{k=0}^{\infty} f_k$ converges uniformly on \boldsymbol{E} .

Proof:

Since $\sum_{k=0}^{\infty} M_k$ is Cauchy, we can choose a number $M > N$ such that for any m and n that satisfy $m > n > M$ we get that $\sum_{k=n+1}^{m} M_k < \varepsilon$. Then we see that for z in the set **E** that our series $\sum_{k=0}^{\infty} f_k(z)$ is also Cauchy, since

 $|\sum_{k=n+1}^{m} f_k(z)| \leq \sum_{k=n+1}^{m} |f_k(z)| \leq \sum_{k=n+1}^{m} M_k < \varepsilon$ (10)

Therefore, $\sum_{k=0}^{\infty} f_k$ () converges for every ϵE . Let us say that $\sum_{k=0}^{\infty} f_k(z)$ converges to the function $F(z)$.

Now, we want to show that $\sum_{k=0}^{\infty} f_k(z)$ converges uniformly to $F(z)$. Observe that we can rewrite

$$
\left|\sum_{k=n+1}^m f_k(z)\right| \le \sum_{k=n+1}^m |f_k(z)| \le \sum_{k=n+1}^m M_k < \varepsilon
$$

in terms of partial sums

 $|\sum_{k=0}^{m} f_k(z) - \sum_{k=0}^{n} f_k(z)| < \varepsilon$ (11) for all $z \in E$, and where $m > n > N$. Then applying Corollary (3.4) of the Cauchy Criterion, we see that $|F(z) - \sum_{k=0}^{n} f_k(z)| \leq \varepsilon (12)$

Forz \in **E**, and where $m > n > N$. Thus, the uniform convergence is shown.

Theorem4.7. (*Comparison test*) **[\[2\]](#page-4-0)**

Suppose we have the terms a_k such that $|a_k| \le M_k$ for all $k \in \mathbb{Z}$, $k > N$ for some number N . Then if the series $\sum_{k=0}^{\infty} M_k$ converges, the series $\sum_{k=0}^{\infty} a_k$ converges as well.

Since we know some of the ideas behind the Weierstrass M-Test, ^{[\[5\]](#page-4-1)} we can now begin to look at some of its applications. We will first consider an *application* of the Weierstrass M-Test in the set of ℝ, before moving into applications within the set of $\mathbb C$. **Example4.8.**

Show that the real-valued series

$$
\sum_{k=1}^{\infty} \frac{1}{4^k} \sin\left(\frac{k}{3^k}\right)
$$

is uniformly convergent.

The WeierstrassM-Test **[\[5\]](#page-4-1)** gives us the ability to show this without considering any limits. First, we observe that for any $x \in \mathbb{R}$ $\frac{1}{\sin\left(\frac{k}{2}\right)}$ $\left| \frac{\kappa}{3^k} \right|$ ≤ 1 for all k. Then it is easy to see that $\frac{1}{4}$ $\frac{1}{4^k}$ sin $\left(\frac{k}{3^k}\right)$ $\left|\frac{k}{3^k}\right|\right|\leq \frac{1}{4^k}$ $\frac{1}{4^k}$. So now let $M_k = \frac{1}{4k}$ $\frac{1}{4^k}$.

Now we want to show that the series $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{4^k}$ (our series $\sum_{k=1}^{\infty} M_k$) is convergent. This series $\sum_{k=0}^{\infty} \frac{1}{4k}$ $\int_{k=0}^{\infty} \frac{1}{4^k}$ converges to $\frac{1}{3}$ $\frac{1}{3}$ by the following Lemma.

Lemma 4.9.

The series $\sum_{k=0}^{\infty} a^k$ converges to $\frac{1}{1-a}$ $\frac{1}{1-a}$ if $|a|$ < 1.

So we now have
$$
\sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{4}{3} = 1 +
$$

\n $\sum_{k=1}^{\infty} \frac{1}{4^k} = 1 + \frac{1}{3}$. Hence $\sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{1}{3}$, (our
\nseries $\sum_{k=1}^{\infty} M_k = \frac{1}{3}$). Now by the
\nWeierstrass M-Test we see the
\nseries $\sum_{k=1}^{\infty} \frac{1}{4^k} \sin\left(\frac{k}{3^k}\right)$ is uniformly
\nconvergent on R.

Now to consider an *application* of the Weierstrass M-Test in the set of \mathbb{C} .

Example 4.10.

Show that the exponential function $f(z) =$ e^z is uniformly convergent $[1,4]$ $[1,4]$ on any bounded set $S \subset \mathbb{C}$.

Recall that e^z can be rewritten as the series $\sum_{k=0}^{\infty} \frac{z^k}{k}$ $k!$ ∞ $\sum_{k=0}^{\infty} \frac{z}{k!}$. Now we will show that this series is uniformly on some disk \boldsymbol{D} of radius \boldsymbol{r} centered at the origin. To show this we must find some M_k such that $\left| \frac{z^k}{k!} \right|$ $\left| \sum_{k=1}^{2} \right| \leq M_k$ for all $z \in D$. Recall that $|z^k| \leq |z|^k$, and that $|z| \in \mathbb{R}$. So let $|z| < r \in \mathbb{R}$. Then it follows that $\left|\frac{z^k}{1+z}\right|$ $\left|\frac{z^k}{k!}\right| \leq \frac{|z|^k}{k!}$ $\frac{z|^k}{k!} \leq \frac{r^k}{k!}$ $\frac{1}{k!}$. We see that r^k $\frac{r^k}{k!} \in \mathbb{R}$, so now let $M_k = \frac{r^k}{k!}$ $\frac{k!}{k!}$. We may be able to *apply* the Weierstrass M-Test, $\left[\frac{5}{2}\right]$ if we can show that the series

 $\sum_{k=0}^{\infty} M_k$ $_{k=0}^{\infty} M_k$ converges. If we use the (*Ratio Test*), ^{[\[2\]](#page-4-0)} we can prove that $\sum_{k=0}^{\infty} M_k$ $\kappa=0$ M_k is convergent. So now recall:

III. Ratio Test:

^{[\[2\]](#page-4-0)} Given a series $\sum_{k=0}^{\infty} a_k$ $\sum_{k=0}^{\infty} a_k$, find

 $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a}\right|$ a_k $= L(13)$ If $L > 1$, the series diverges

If $L < 1$, the series converges

If $L = I$ or the limit fails to exist, then the test is inconclusive.

So now we see that

 $\lim_{k\to\infty}\left|\frac{M_{k+1}}{M}\right|$ $\left|\frac{f_{k+1}}{M_k}\right| = \lim_{k \to \infty}$ r^{k+1} $(k+1)!$ r^k k! $=\lim_{k\to\infty}\frac{r}{r+1}$ $\frac{r}{r+1} = 0.$ Thus by the (Ratio Test)we see that the series $\sum_{k=0}^{\infty} M_k$ $_{k=0}^{\infty} M_k$ converges. Then by the Weierstrass M-Test we see that $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ $k!$ ∞ $\sum_{k=0}^{\infty} \frac{z}{k!}$ Is uniformly convergent on some disk \boldsymbol{D} of radius \boldsymbol{D} centered at the origin.

REFERENCES

- 1. R.M. Dudley, *on sequential convergence*. Trans. Amer. Math. Soc. 112 (1964), 483-507.
- 2. Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill Inc. 1976.
- 3. Ash, R. B., & Novinger, W. P. (n.d.). *Complex analysis*. Illinois: University of Illinois at Urbana-Champaign, Dept. of mathematics. Retrieved April 14, 2009,
- 4. Zbigniew Grande. *On the almost monotone convergence of sequences of continuous functions*. Eur. J. Math. 9(4) . 2011.772-777
- 5. Stephen Abbott. *Understanding Analysis*. Springer. 2015.

How to cite this article: Mohammed Rabih NA. On convergence criteria for sequences. International Journal of Research and Review. 2017; 4(5):87-91.
