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ABSTRACT 
 

In this paper we discuss the concept of convergence of real, complex and functions {𝑓𝑛} sequences, 

also we discuss the concept of sub-sequences. We presented the concept of convergence criteria for 
the sequences. First, we presented the cauchy criterion for convergence, and then we presented 

Weierstrass M-test for convergence and its some applications. 
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1. Sequences and Convergence 

Definition 1.1. A sequence is a function 
[2,5]

 

whose domain is 𝑁and whose codomainis 

ℝ. Given a function 𝑓: 𝑁 →  ℝ, 𝑓(𝑛) is the 

𝑛th term in the sequence. 

Example1.2. Let𝑥𝑛 =  
1

𝑛
. In this case, our 

function𝑓is defined as 

𝑓(𝑛)  =  
1

𝑛
 

As a listed sequence of numbers, this would 

look like the following: 

 1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, … …   

Definition1.3. A sequence of real numbers 

converges 
[1, 4]

 to a real number 𝑎if, forevery 

positive number 𝜀, there exists an 𝑁 ∈
ℕ such that for all 𝑛 ≥  𝑁,  𝑎𝑛 − 𝑎 < 𝜀. 

We call such an 𝑎the limit of the sequence 

and write lim𝑛⟶∞ 𝑎𝑛 𝑥 = 𝑎. 

 

Definition1.4. A sequence (𝑓𝑛 )𝑛=1
∞ of 

functions 
[4]

 on a subset𝑨 ofℝ into ℝ. 

 

Definition1.5. (Pointwise convergence), 
[4]

 

Let 𝑫be a subset of ℝand let {𝑓𝑛 }be a 

sequence of functionsdefined on 𝐷. We say 

that {𝑓𝑛 }converges pointwise on 

𝑫iflim𝑛⟶∞ 𝑓𝑛 (𝑥) ⁡exists for each point 𝑥in 

𝑫. 

This means that lim𝑛⟶∞ 𝑓𝑛 (𝑥) is a real 

number that depends only on 𝑥. 

If {𝑓𝑛 }is pointwise convergent then the 

function defined by  

𝑓(𝑥)  = lim𝑛⟶∞ 𝑓𝑛 (𝑥)for every 𝑥in 𝑫, is 

called the pointwise limit of the sequence 

{𝑓𝑛 } 

Note: The notation 𝑁 =  𝑁(𝑥, 𝜀) means that 

the natural number 𝑁dependson the choice 

of 𝑥and𝜀. 

 

Definition1.6. (Uniform convergence), 
[4, 5]

 

Let 𝑫 be a subset of ℝ and let {𝑓𝑛 } be a 

sequence of realvalued functions defined on 

𝑫. Then {𝑓𝑛 }converges uniformly to 𝑓 if 

givenany 𝜀 >  0, there exists a natural 

number 𝑁 =  𝑁(𝜀) such that|𝑓𝑛 (𝑥)  −
 𝑓(𝑥)|  < 𝜀 for every 𝑛 >  𝑁 and for every 

𝑥 in 𝑫. 

Note: In the above definition the natural 

number 𝑁 depends only on 𝜀. 

Therefore, uniform convergence implies 

pointwise convergence. 

 

2. Subsequences 

Definition 2.1. 

Let {𝑎𝑛 }𝑛≥1be a sequence and{𝑛𝑘 }𝑘≥1 any 

strictly increasing sequence of positive 

integers; 
[2]

 that is, 
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0 < 𝑛1 < 𝑛2 <  𝑛3 <∙ ∙ ∙ . 
Then the sequence {𝑎𝑛𝑘

}𝑘≥1, i.e., {𝑏𝑘 }𝑘≥1, 

where 𝑏𝑘= 𝑎𝑛𝑘
, is called a subsequence of 

{𝑎𝑛 }𝑛≥1. That is, a subsequence is obtained 

by choosing terms from the original 

sequence, without altering the order of the 

terms, through the map 𝑘 →  𝑛𝑘 , which 

determines the indices used to pick out the 

subsequence.For instance, {𝑎7𝑘+1} 

corresponds to the sequence of positive 

integers𝑛𝑘  =  7𝑘 +  1, 𝑘 =  1, 2, . . .. 
Observe that everyincreasing sequence 

{𝑛𝑘 }ofpositive integers must tend to infinity, 

because 

𝑛𝑘  ≥  𝑘 𝑓𝑜𝑟 𝑘 =  1, 2, . . . . 
The sequences 

 
1

𝑘2
 
𝑘≥1

, 
1

2𝑘
 
𝑘≥1

,  
1

2𝑘+1
 
𝑘≥1

,  
1

5𝑘+3
 
𝑘≥1

, 

 
1

2𝑘
 
𝑘≥1

 

are some subsequences 
[2]

 of the sequence 
 1 𝑘  𝑘≥1, formed by setting 𝑛𝑘  =
𝑘2 , 2𝑘, 2𝑘 + 1, 5𝑘 + 3, 2𝑘 , respectively. 

Note that all the 

abovesubsequencesconverge to the same 

limit, which is also the limit of the original 

sequence 1 𝑘  𝑘≥1. Can we conjecture that 

every subsequence of a convergent 

sequence must converge and converge to the 

same limit? 

Theorem 2.2. (Invariance property of 

subsequences). 
[2]

  

If {𝑎𝑛 } converges, then every subsequence 

{𝑎𝑛𝑘
} of it converges to the same limit. 

Also,if 𝑎𝑛  → ∞, then {𝑎𝑛𝑘
}  → ∞ as well. 

Proof. Suppose that {𝑎𝑛𝑘
} is a subsequence 

of {𝑎𝑛 }. Note that 𝑛𝑘  ≥  𝑘. Let𝐿 =  𝑙𝑖𝑚 𝑎𝑛  

and 𝜀 >  0 be given. Then there exists an 𝑁 

such that 
 𝑎𝑘  −  𝐿 <  𝜀 𝑓𝑜𝑟 𝑘 ≥  𝑁. (1) 

Now 𝑘 ≥  𝑁 implies 𝑛𝑘  ≥  𝑁, which in 

turn implies that 

 𝑎𝑛𝑘
−  𝐿 < 𝜀 𝑓𝑜𝑟 𝑛𝑘  ≥  𝑁. (2) 

Thus, 𝑎𝑛𝑘
 converges to 𝐿 as 𝑘 →  ∞. The 

proof of the second partfollowssimilarly. 

Corollary2.3. The sequence {𝑎𝑛 } is 

divergent 
[4]

 if it has two conv-ergent 

subsequences with different limits. Also, 

{𝑎𝑛 } is divergent if it has a subsequencethat 

tends to ∞ or a subsequence that tends to 

−∞. 

Theorem2.4. A sequence is convergent if 

and only if there exists a real number 𝐿 such 

that every subsequence of the sequence has 

a further subsequencethat converges to 𝐿. 

Corollary2.5. If both odd and even 

subsequences of {𝑎𝑛 } converge to thesame 

limit 𝑙, then so does the original sequence. 

Note that {(−1)𝑛 } diverges, because it has 

two subsequences {(−1)2𝑛 }and {(−1)2𝑛−1} 

converging to two different limits, namely 1 

and −1. 

 

3. Complex Sequences 

Let  𝑧𝑛  be a sequence of complex numbers 
[3]

 and let 𝑧 ∈ ℂ. We say that  𝑧𝑛   converges 

to 𝑧and write 𝑧𝑛 →  𝑧 (or 𝑙𝑖𝑚 𝑧𝑛  =  𝑧 etc.) 

if for every positive real number 𝜀 >  0, 

there exists anatural number 𝑁 such that 

𝑛 ≥  𝑁 ⇒ |𝑧𝑛  −  𝑧|  < 𝜀 

Theorem 3.1. Let 𝑧𝑛  =  𝑥𝑛  +  𝑖𝑦𝑛 . 
(i) 𝑧𝑛 →  𝑧 ⇒ 𝑥𝑛 → ℜ𝑧, 𝑦𝑛 → ℑ𝑦 

(ii) 𝑥𝑛  → 𝑥,  𝑦𝑛  →  𝑦 ⇒  𝑧𝑛  →  𝑥𝑛  +  𝑖𝑦𝑛  

Proof. (i) Put 𝑥𝑛 = ℜ𝑧. |𝑥𝑛  −  𝑋|  =
 ℜ(𝑧𝑛  −  𝑧)  ≤  |𝑧𝑛  −  𝑧|. So given 𝜀 >  0 

use the same 𝑁. 

(ii)|𝑧𝑛  −  𝑧| ≤  |𝑥𝑛  −  𝑥|  + |𝑦𝑛  −  𝑦| by ∆ 

law 

Find 𝑁1 to ensure first term is less than 𝜀/2, 

and 𝑁2 to ensure second is less than𝜀/2then 

use 𝑁 ∶=  𝑚𝑖𝑛(𝑁1, 𝑁2). 
 

4. Convergence criteria for sequences 

 

I. Cauchy criterion  

Definition4.1. 
[3]

 The real sequence𝑎𝑛  

converges to something if and only if this 

holds: for every 𝜀 >  0 thereexists 𝑁 such 

that  𝑎𝑛 − 𝑎𝑚  < 𝜀whenever 𝑛, 𝑚 >
 𝑁.This is necessary and sufficient. 

To prove one implication: Suppose the 

sequence 𝑎𝑛  converges, 
[2]

 say to 𝑎. Then by 

definition, for every 𝜀 >  0we can find 𝑁 

such that 
 𝑎 − 𝑎𝑛  < 𝜀 whenever 𝑛 > 𝑁. But then if 

we are given 𝜀 >  0 we can find 𝑁 suchthat 
 𝑎 − 𝑎𝑛  < 𝜀 2  for 𝑛 > 𝑁, and then 

 𝑎𝑛 − 𝑎𝑚  =   𝑎𝑛 − 𝑎 −  𝑎𝑚 − 𝑎  < 
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 𝑎𝑛 − 𝑎 +  𝑎𝑚 − 𝑎 < 𝜀 2 + 𝜀 2  = 𝜀 (3) 

for 𝑚, 𝑛 >  𝑁. 

To prove the other: Suppose the criterion 
[3]

 

holds. We know that we have a subsequence 

𝑎𝑛 𝑖
 which convergesto some 𝑎. I claim that 

in fact the whole sequence converges to this 

same 𝑎. We know that for any 𝜀 >  0 

we can find 𝑁1 such that  𝑎𝑛 𝑖
− 𝑎 < 𝜀 for 

𝑖 ≥  𝑁1. We also know that if we are given 

𝜀 >  0 we can find 𝐾2such that  𝑎𝑛 −
𝑎𝑚  < 𝜀 for , 𝑚 ≥  𝑁2 . 

Now we want to prove that for any 𝜀 >  0 

we can find 𝑁 such that  𝑎𝑛 − 𝑎 < 𝜀 for 

𝑛 ≥  𝑁. 

First choose 𝑁1 such that  𝑎 − 𝑎𝑛 𝑖
 < 𝜀 2  

for 𝑖 ≥  𝑁1. Second, choose 𝑁2 such that 
 𝑎𝑛 − 𝑎𝑚  < 𝜀 2  (4) 

for 𝑚, 𝑛 ≥  𝑁2. Suppose 𝑛 ≥  𝑁2. Choose 

some 𝑎𝑛 𝑖
 with both 𝑛𝑖  ≥  𝑁2 and 𝑖 ≥  𝑁1. 

Then 

 𝑎𝑛 − 𝑎 =   𝑎𝑛 − 𝑎𝑛 𝑖
 +  𝑎𝑛 𝑖

− 𝑎  ≤ 

 𝑎𝑛 − 𝑎𝑛 𝑖
 +  𝑎𝑛 𝑖

− 𝑎 < 𝜀 2 + 𝜀 2  = 𝜀 

(5) 

Now Suppose  𝑧𝑛  is a sequence of complex 

numbers 
[3]

 for 𝑛 ∈ ℕ. Then 𝑧𝑛   converges 

if and only if for any𝜀 > 0 there exists 

𝑁 ∈ ℞an such that 𝑧𝑛 − 𝑧𝑚  < 𝜀 for every 

𝑚, 𝑛 ∈ ℞such that 𝑚 > 𝑛 > 𝑁.  

Any sequence that satisfies the Cauchy 

Criterion 
[3]

 is known as a Cauchy sequence. 

The above theorem also shows that every 

convergent sequence is Cauchy, and every 

Cauchy sequence is convergent.  

Corollary 4.2. 

If  𝑧𝑛  is a Cauchy sequence 
[2, 3]

 that 

converges to 𝑧, and 𝑁 is chosen such that 
 𝑧𝑛 − 𝑧𝑚  < 𝜀for every𝑚, 𝑛 ∈ ℞ such 

that𝑚 > 𝑁, 𝑛 > 𝑁, then for each, 𝑛 > 𝑁 

, 𝑧𝑛 − 𝑧 < 𝜀. .  

Proof:  

This proof is rather straightforward. Let 

𝑚 → ∞in the inequality  𝑧𝑛 − 𝑧𝑚  < 𝜀. It 

follows from this that 𝑧𝑛 − 𝑧 ≤ 𝜀.  

 

Corollary4.3. 

The series 𝑎𝑘
∞
𝑘=0  converges 

[2]
 if and only 

if for any𝜀 > 0 there exists an 𝑁 such 

that  𝑎𝑘
𝑚
𝑘=𝑛+1  < 𝜀 for every 𝑚, 𝑛 ∈ ℞such 

that𝑚 > 𝑛 > 𝑁 

Definition 4.4. A sequence (𝑓𝑛 ) of 

functions 𝑓𝑛 ∶  𝑨 →  ℝ is uniformly 

Cauchyon 𝑨if for every 𝜀 >  0 there exists 

𝑁 ∈  ℕ such that 

𝑚, 𝑛 >  𝑁implies that |𝑓𝑚 (𝑥)  − 𝑓𝑛 (𝑥)|  <
 𝐸for all 𝑥 ∈ 𝑨. 

The key part of the following proof is the 

argument to show that a pointwise 

convergent, uniformly Cauchy sequence 

converges uniformly. 

Theorem 4.5. A sequence (𝑓𝑛 ) of functions 

𝑓𝑛 ∶  𝑨 →  ℝ convergesuniformly on𝑨if and 

only if it is uniformly Cauchy on 𝑨. 

Proof. Suppose that (𝑓𝑛 ) converges 

uniformly, 
[4]

 to 𝑓on 𝑨. Then, given 

 ℰ > 0, thereexists 𝑁 ∈  ℕ such that 

|𝑓𝑛 (𝑥)  −  𝑓(𝑥)|  < ℰ 2  for all 𝑥 ∈ 𝑨if 

𝑛 >  𝑁. 

It follows that if 𝑚, 𝑛 >  𝑁 then 
 𝑓𝑚  𝑥 −  𝑓𝑛  𝑥  ≤   𝑓𝑚  𝑥 −  𝑓 𝑥  +   𝑓 𝑥 −  𝑓𝑛 𝑥  <  𝐸  

for all  

𝑥 ∈ 𝑨, 

which shows that (𝑓𝑛 ) is uniformly Cauchy. 
[3,4]

 

Conversely, suppose that (𝑓𝑛 ) is uniformly 

Cauchy. Then for each  

𝑥 ∈ 𝑨, thereal sequence 
[2,5] (𝑓𝑛 (𝑥)) is 

Cauchy, so it converges by the 

completeness of ℝ. Wedefine 𝑓 ∶  𝑨 →  ℝ 

by 

𝑓(𝑥)  =  𝑙𝑖𝑚𝑛→∞𝑓𝑛(𝑥), (6) 
and then 𝑓𝑛  →  𝑓pointwise. 

To prove that𝑓𝑛  →  𝑓uniformly, let ℰ >  0. 

Since (𝑓𝑛 ) is uniformly Cauchy, wecan 

choose 𝑁 ∈  ℕ (depending only on ℰ) such 

that 

|𝑓𝑚(𝑥)  −  𝑓𝑛(𝑥)|  < ℰ 2 for all 𝑥 ∈ 𝑨if 

𝑚, 𝑛 >  𝑁. 

Let 𝑛 >  𝑁and 𝑥 ∈ 𝑨. Then for every 

𝑚 >  𝑁we have 

 

|𝑓𝑛(𝑥)  −  𝑓(𝑥)|  ≤  |𝑓𝑛(𝑥)  − 𝑓𝑚 (𝑥)|  + |𝑓𝑚 (𝑥)  −  𝑓(𝑥)|  < ℰ 2 + |𝑓𝑚 (𝑥)  −  𝑓(𝑥)|. 
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Since 𝑓𝑚 (𝑥)  →  𝑓(𝑥) as 𝑚 →  ∞, we can 

choose 𝑚 >  𝑁(depending on 𝑥, but 

itdoesn’t matter since 𝑚doesn’t appear in 

the final result) suchthat 

|𝑓𝑚 (𝑥)  −  𝑓(𝑥)|  < ℰ 2  
It follows that if 𝑛 >  𝑁, then 

|𝑓𝑛 (𝑥)  −  𝑓(𝑥)|  <  𝜀 (7) 

for all 𝑥 ∈ 𝑨, 

which proves that 𝑓𝑛  →  𝑓uniformly. 

Alternatively, we can take the limit as 

𝑚 →  ∞in the Cauchy condition to getfor all 

𝑥 ∈ 𝑨and 𝑛 >  𝑁that 

|𝑓(𝑥)  −  𝑓𝑛 (𝑥)|  =  𝑙𝑖𝑚𝑚 →∞|𝑓𝑚 (𝑥)  − 𝑓𝑛 (𝑥)|  ≤  ℰ 2 <  𝐸 (8) 

 

II. Weierstrass M-test 

Theorem4.6. (WeierstrassM-test) 
[5]

 

Suppose  𝑓𝑘  is a sequence of real- or 

complex-valued functions 
[3]

 on some set 𝑬. 

Also, suppose that  𝑀𝑘
∞
𝑘=0 is a convergent 

series where𝑀𝑘  are real non-negative terms. 

If  𝑓𝑘 (𝑧) ≤ 𝑀𝑘 for all 𝑘 greater than some 

number 𝑁 and for all 𝑧 in some set 𝑬, then it 

follows that the series 𝑓𝑘
∞
𝑘=0  converges 

uniformly on 𝑬.  

Proof:  

Since  𝑀𝑘
∞
𝑘=0 is Cauchy, we can choose a 

number𝑀 > 𝑁 such that for any 𝑚 and 𝑛 

that satisfy 𝑚 > 𝑛 > 𝑀we get 

that 𝑀𝑘 < 𝜀𝑚
𝑘=𝑛+1  . Then we see that for 𝑧 

in the set 𝑬 that our series 𝑓𝑘
∞
𝑘=0 (𝑧) is also 

Cauchy, since  
  𝑓𝑘 (𝑧)𝑚

𝑘=𝑛+1  ≤   𝑓𝑘 𝑧  𝑚
𝑘=𝑛+1 ≤  𝑀𝑘

𝑚
𝑘=𝑛+1 < 𝜀 

(10)  

 

Therefore, 𝑓𝑘
∞
𝑘=0 (𝑧) converges for 

every𝑧 ∈ 𝑬 . Let us say that 

 𝑓𝑘
∞
𝑘=0 (𝑧)converges to the function𝐹(𝑧) .  

Now, we want to show that 𝑓𝑘
∞
𝑘=0 (𝑧) 

converges uniformly to𝐹(𝑧). Observe that 

we can rewrite  

  𝑓𝑘(𝑧)

𝑚

𝑘=𝑛+1

 ≤   𝑓𝑘 𝑧  

𝑚

𝑘=𝑛+1

≤  𝑀𝑘

𝑚

𝑘=𝑛+1

< 𝜀 

 

in terms of partial sums  

  𝑓𝑘 (𝑧)𝑚
𝑘=0 −  𝑓𝑘 (𝑧)𝑛

𝑘=0  < 𝜀 (11) 

for all 𝑧 ∈ 𝑬, and where𝑚 > 𝑛 > 𝑁 . Then 

applying Corollary (3.4) of the Cauchy 

Criterion, we see that 

 𝐹(𝑧) −  𝑓𝑘 (𝑧)𝑛
𝑘=0  ≤ 𝜀 (12) 

For𝑧 ∈ 𝑬 , and where 𝑚 > 𝑛 > 𝑁. Thus, the 

uniform convergence is shown. 

Theorem4.7. (Comparison test) 
[2]

 

Suppose we have the terms 𝑎𝑘such 

that 𝑎𝑘 ≤ 𝑀𝑘  for all𝑘 ∈ ℞ ,𝑘 > 𝑁 for 

some number 𝑁. Then if the series 
 𝑀𝑘
∞
𝑘=0 converges, the series 

 𝑎𝑘
∞
𝑘=0 converges as well.  

Since we know some of the ideas behind the 

Weierstrass M-Test, 
[5]

 we can now begin to 

look at some of its applications. We will 

first consider an application of the 

Weierstrass M-Test in the set of ℝ, before 

moving into applications within the set ofℂ .  

Example4.8. 

Show that the real-valued series  

 
1

4𝑘

∞

𝑘=1

sin  
𝑘

3𝑘
  

is uniformly convergent.  

The WeierstrassM-Test 
[5]

 gives us the 

ability to show this without considering any 

limits. First, we observe that for any𝑥 ∈ ℝ 

, sin  
𝑘

3𝑘  ≤ 1 for all 𝑘. Then it is easy to 

see that  
1

4𝑘 sin  
𝑘

3𝑘  ≤
1

4𝑘 . So now let 

𝑀𝑘 =
1

4𝑘 .  

Now we want to show that the series 
1

4𝑘
∞
𝑘=1  

(our series  𝑀𝑘
∞
𝑘=1 ) is convergent. This 

series  
1

4𝑘
∞
𝑘=0 converges to

1

3
 by the 

following Lemma.  

Lemma 4.9. 

The series  𝑎𝑘∞
𝑘=0 converges to

1

1−𝑎
 if 

 𝑎 < 1.  

 

So we now have 
1

4𝑘
∞
𝑘=0 =

4

3
= 1 +

 
1

4𝑘
∞
𝑘=1 = 1 +

1

3
. Hence  

1

4𝑘
∞
𝑘=1 =

1

3
, (our 

series 𝑀𝑘
∞
𝑘=1 =

1

3
). Now by the 

Weierstrass M-Test we see the 

series 
1

4𝑘
∞
𝑘=1 sin  

𝑘

3𝑘 is uniformly 

convergent onℝ .  

Now to consider an application of the 

Weierstrass M-Test in the set of ℂ.  

 

Example 4.10. 
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Show that the exponential function𝑓 𝑧 =
𝑒𝑧  is uniformly convergent 

[1,4]
 on any 

bounded set 𝑺 ⊂ ℂ.  

Recall that 𝑒𝑧can be rewritten as the series 

 
𝑧𝑘

𝑘!

∞
𝑘=0 . Now we will show that this series 

is uniformly on some disk 𝑫 of radius 𝑟 

centered at the origin. To show this we must 

find some𝑀𝑘  such that  
𝑧𝑘

𝑘!
 ≤ 𝑀𝑘 for 

all𝑧 ∈ 𝑫 . Recall that  𝑧𝑘  ≤  𝑧 𝑘 , and 

that  𝑧 ∈ ℝ. So let 𝑧 < 𝑟 ∈ ℝ. Then it 

follows that  
𝑧𝑘

𝑘!
 ≤

 𝑧 𝑘

𝑘!
≤

𝑟𝑘

𝑘!
. We see that 

𝑟𝑘

𝑘!
∈ ℝ, so now let 𝑀𝑘 =

𝑟𝑘

𝑘!
.  

We may be able to apply the Weierstrass M-

Test, 
[5]

 if we can show that the series 

 𝑀𝑘
∞
𝑘=0 converges. If we use the (Ratio 

Test), 
[2]

 we can prove that  𝑀𝑘
∞
𝑘=0 is 

convergent. So now recall:  

III. Ratio Test:  
[2]

 Given a series  𝑎𝑘
∞
𝑘=0 , find  

lim𝑘→∞  
𝑎𝑘+1

𝑎𝑘
 = 𝐿 (13) 

If 𝐿 > 1, the series diverges  

If 𝐿 < 1, the series converges  

If 𝐿 = 1or the limit fails to exist, then the 

test is inconclusive.  

So now we see that 

lim𝑘→∞  
𝑀𝑘+1

𝑀𝑘
 = lim𝑘→∞

𝑟𝑘+1

 𝑘+1 !

𝑟𝑘

𝑘!

= lim𝑘→∞
𝑟

𝑟+1
= 0. 

Thus by the (Ratio Test)we see that the 

series  𝑀𝑘
∞
𝑘=0 converges. Then by the 

Weierstrass M-Test we see that 
𝑧𝑘

𝑘!

∞
𝑘=0 Is 

uniformly convergent on some disk 𝑫 of 

radius 𝑫 centered at the origin. 
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