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ABSTRACT 

 

In this paper we study the isomorphic classifications sequences of 𝐶(𝑈𝑛 , 𝑋)spaces, the Banach spaces 

of all continuous 𝑋-valued functions defined on infinite compact sequences of metric spaces𝑈𝑛 , 

equipped with the supremum norm. We first introduce the concept of 𝛼 + 𝜀 -quotient of Banach 

spaces 𝑋. Thus, we prove that if 𝑋 has some 𝛼 + 𝜀 -quotient which is uniformly convex, then for all 

𝑈𝑛+1and 𝑈𝑛+2  the following statements are equivalent: 

(a) 𝐶(𝑈𝑛+1, 𝑋)is isomorphic to 𝐶(𝑈𝑛+2, 𝑋). 
(b) 𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝑈𝑛+2). 
This allows us to classify, up to an isomorphism, some 𝐶(𝑈𝑛 , 𝑌 ⊕ 𝑙𝑝(𝛤))spaces, 1 < 𝑝 ≤ ∞, and 

certain 𝐶 𝑆𝑛  spaces involving large compact Hausdorff sequence spaces 𝑆𝑛 . 

 

Keywords: Bessaga-Pełczyński and Milutin’s theorems on separable 𝐶(𝐾)spaces Isomorphic 

classifications of 𝐶 𝐾, 𝑋  spaces 𝜔1-quotient of Banach spaces 

 

1. INTRODUCTION 

We refer the reader to 
[1,7,18,19]

 for 

details on standard notation and terminology 

we use in the paper. For a compact 

Hausdorff topological sequence spaces 

𝑈𝑛  let 𝐶(𝑈𝑛 , 𝑋)denote the Banach space of 

all continuous 𝑋-valued functions defined 

on 𝑈𝑛  , equipped with the supremum norm. 

This space will be denoted by 𝐶(𝑈𝑛)in the 

case where 𝑋 = 𝑅. As usual, in the case 

where 𝑈𝑛  is the interval of ordinals 

[0, 𝛼]endowed with the order topology, 

these spaces will be denoted respectively by 

𝐶(𝛼, 𝑋)and 𝐶(𝛼). When 𝛼 is the first 

infinite ordinal, these spaces will be also 

denoted by 𝑐0(𝑋)and 𝑐0respectively. If 𝑈𝑛  

and 𝑆𝑛  are compact Hausdorff sequences 

spaces, we denote by 𝑈𝑛 ⊕𝑆𝑛  and 𝑈𝑛 × 𝑆𝑛  

respectively the topological sum and the 

topological product of 𝑈𝑛and 𝑆𝑛 . For a fixed 

cardinal number 𝜀 > 0, 𝟐1+𝜀denotes the 

Cantor cube, that is, the product of mfamily 

of copies of the two-point space 𝟐, provided 

with the product topology. If 𝑋 and 𝑌 are 

Banach spaces, then 𝑋 ∼ 𝑌 means that 𝑋 is 

isomorphic to 𝑌 and 𝑋 ↠ 𝑌 means that 𝑌is 

isomorphic to a quotient of 𝑋. Finally, the 

symbol 𝑋⊕ 𝑌 denotes the Cartesian 

product of 𝑋and 𝑌. 
The central result on the isomorphic 

classification of separable sequences of 

𝐶(𝑈𝑛)spaces, that is,𝑈𝑛are metric spaces, is 

Milutin’s Theorem, 
[13]

 see. 
[15-17]

 This result 

states that if 𝑈𝑛 is an uncountable compact 

sequences of metric space, then  

𝐶(𝑈𝑛)~𝐶(𝟐ℵ0 ).    (1.1) 

In the case where 𝑈𝑛 is a countable compact 

sequences of metric space, a classical 
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Mazurkiewicz and Sierpiński’s Theorem 
[12]

 

asserts that 𝑈𝑛 is homeomorphic to some 

interval of ordinals  0, 𝛼  for some ordinal 

𝜀, where 𝛼 + 𝜀 is the first uncountable 

ordinal. The isomorphic classification of the 

𝐶(𝛼)spaces was done by Bessaga and 

Pełczyński 
[2]

 in the following way. Let 

𝜉and 𝜂 be two ordinals such that 𝜔 ≤ 𝜉 ≤
𝜂 < 𝛼 + 𝜀 . Then 

 𝐶 𝜉 ~𝐶 𝜂 ⟺ 𝜂 < 𝜉𝜔 .   (1.2) 

In this section we are mainly 

interested in getting the isomorphic 

classification of certain spaces involving the 

spaces (1.1) and (1.2). The starting point of 

our research is the fact that recently in 
[10]

 it 

was provided an extension of (1.2) to the 

vector-valued case. Namely, recall that a 

subspace 𝐻of a Banach space 𝑋is a maximal 

factor of 𝑋whenever 𝑋is the direct sum of 

Hand some subspace 𝑌of 𝑋such that every 

finite sum 𝑌𝑛  of 𝑌contains no copy of 𝐻. 

Then, the main result of 
[10]

 is as follows. 

Theorem 1.1. Let 𝑋 be a Banach space 

containing some uniformly convex maximal 

factor and ordinals 𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 . 
Then 

 𝐶 𝜉, 𝑋 ~𝐶 𝜂, 𝑋 ⟺ 𝜂 < 𝜉𝜔 . 
Of course Theorem1.1 can be applied to 

obtain the isomorphic classifications of so 

many 𝐶(𝛼, 𝑋)spaces, where 𝜔 ≤ 𝛼 < 𝛼 +
𝜀 . In particular, since 𝐶(𝟐1+𝜀)contains no 

copy of the classical uniformly convex 

Banach spaces 𝑙 𝑞−𝜀 (𝛤), 1 <  𝑞 − 𝜀  < ∞, 

whenever 𝛤 is an uncountable set 
[5,14]

 and 

moreover  

𝐶 𝛼, 𝐶(𝟐1+𝜀) ~𝐶 𝟐1+𝜀 ,   (1.3) 

for all 𝜔 ≤ 𝛼 < 𝛼 + 𝜀 𝑎𝑛𝑑 infinite cardinal 

𝜀 > 0, it follows by Theorem1.1 that the 

isomorphic classification of the following 

spaces is the same as that of 𝐶(𝛼)spaces, 

𝜔 ≤ 𝛼 < 𝛼 + 𝜀 , mentioned in (1.2)  

  𝐶 𝛼, 𝐶(𝟐1+𝜀)⨁𝑙 𝑞−𝜀 (𝛤) ~𝐶 𝟐1+𝜀 ⨁𝐶 𝛼, 𝑙 𝑞−𝜀 (𝛤) ,   (1.4) 

 

On the other hand, observe that when 𝛤is 

finite, the spaces (1.4) are isomorphic to 

𝐶(𝟐1+𝜀 ), for all 𝜔 ≤ 𝛼 < 𝛼 + 𝜀 𝑎𝑛𝑑 infinite 

cardinal 𝜀 > 0. 

Then, it is natural to look for the 

complete isomorphic classification of the 

spaces (1.4)when 1 ≤  𝑞 − 𝜀 ≤ ∞. The 

study of this question in the case where 
 𝑞 − 𝜀  ≠ 1𝑙𝑒𝑑 us to obtain two more 

general isomorphic classifications of some 

𝐶(𝑈𝑛 , 𝑋) spaces for infinite compact 

sequences of metric spaces 𝑈𝑛 . So, our 

contribution to answering the above 

question will be presented as a consequence 

of them. More precisely, in Section 3 we 

will prove:  

Theorem 1.2. Let 𝑌 be a Banach space, 

1 <  𝑞 − 𝜀  < ∞and 𝛤 be aninfinite set. 

Suppose that 𝑌∗contains no copy of 𝑙𝑞 , 

where 1/ 𝑞 − 𝜀  + 1/𝑞 = 1. Then for all 

infinite compact sequences of metric spaces 

𝑈𝑛+1and 𝑈𝑛+2,  

𝐶(𝑈𝑛+1 , 𝑌 ⊕ 𝑙 𝑞−𝜀 (𝛤))  ∼  𝐶(𝑈𝑛+2 , 𝑌 ⊕ 𝑙 𝑞−𝜀 (𝛤))  ⇔  𝐶(𝑈𝑛+1)  ∼  𝐶(𝑈𝑛+2). 
 

Therefore in the case where 1 <  𝑞 − 𝜀  <
2, since the dual of each 𝐶(𝟐1+𝜀)space 

contains no copy of 𝑙𝑞 , with 𝑞 > 2, 
[1]

 the 

isomorphic classification of the spaces 

(1.4)with 1 <  𝑞 − 𝜀  < 2 is a corollary of 

Theorem1.2 regardless of whether the 

infinite set 𝛤is countable or uncountable. 

This furnishes a solution to 
[10]

 when 

1 <  𝑞 − 𝜀  < 2. 

Furthermore, recall that the density 

character of a topological space 𝐹(denoted 

by dens𝐹) is the smallest cardinality of a 

dense subset of 𝐹and denote by |𝛤| the 

cardinality of a set 𝛤. In Section 4 we will 

prove the following theorem. 

Theorem 1.3. Let 𝑌 be a Banach space and 

𝛤an infinite set. Suppose that dens 𝑌 <
2|𝛤|. Then for all infinite compact 

sequences of metric spaces 𝑈𝑛+1and 𝑈𝑛+2,  

𝐶(𝑈𝑛+1 , 𝑌 ⊕ 𝑙∞(𝛤))  ∼  𝐶(𝑈𝑛+2 , 𝑌 ⊕ 𝑙∞(𝛤))  ⇔  𝐶(𝑈𝑛+1)  ∼  𝐶(𝑈𝑛+2). 
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Thus, since 𝑑𝑒𝑛𝑠𝐶 𝟐1+𝜀 =  1 + 𝜀 , for 

every infinite cardinal 𝑚, 
[18]

 Theorem1.3 

provides the isomorphic classification of the 

spaces (1.4)when  𝑞 − 𝜀  = ∞ and 

ℵ0 ≤  1 + 𝜀 < 2|𝛤|. In the case where 
 1 + 𝜀 = |𝛤|  = ℵ0, Theorem(1.3) solves. 
[10]

 
In order to prove Theorems1.2 and 1.3, in 

the next section we state our main result 

(Theorem 2.4) which is a suitable extension 

of Theorem1.1. 

 

2. The Isomorphic Classification of 

Certain Sequence of 𝑪(𝑼𝒏, 𝑿)spaces 

Concerning Theorem 1.1 our main technical 

improvement in this section is to replace the 

uniformly convex maximal factor of 𝑋 by a 

similarly positioned subspace of 𝑋which has 

a uniformly convex quotient. We start by 

introducing the following definition: 

Definition 2.1. We say that a Banach space 

𝑍 is an 𝛼 + 𝜀 -quotient of a Banach 

space 𝑋if there exist subspaces 𝐴 and 𝐵 of 

𝑋such that 

(a)𝑋 = 𝐴 ⊕ 𝐵, 

(b)𝐵 ↠ 𝑍, 
(c)𝐶(𝜉, 𝐴)  ⊕ 𝐵𝑛 ↛ 𝑐0(𝑍), for every 

𝜔 ≤ 𝜉 < 𝛼 + 𝜀 and 1 ≤ 𝑛 < 𝜔. 

Remark 2.2. The above definition was 

inspired by the proof of. 
[9]

 This result states 

that if 𝐹is the uniformly convex Banach 

space introduced by Figiel in 
[8]

 and 𝑍 = 𝐹∗, 
then for all ordinals 𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 , 
𝐶(𝜉, 𝐶(𝟐ℵ0 )⊕ 𝑍) ∼ 𝐶(𝜂, 𝐶(𝟐ℵ0  ) ⊕  𝑍) ⇔ 𝜂 <  𝜉𝜔 . 
In order to prove this, it was shown that for 

all 1 ≤ 𝑛 < 𝜔,  

𝐶(𝟐ℵ0  )  ⊕ 𝑍𝑛 ↛ 𝑐0(𝑍).   (2.1) 

Thus, we can see Definition 2.2 as a 

refinement of this technical obstruction to 

maps onto 𝑐0  sums. Indeed, according to 

(1.3) and (2.1) we deduce that the dual of 

the Figiel space 𝐹is an 𝛼 + 𝜀 -quotient of 

𝐶(𝟐ℵ0 )  ⊕ 𝐹∗. 
Remark 2.3. Notice that 𝛼 + 𝜀 -quotients of 

a Banach space 𝑋are in fact quotients of 𝑋; 

while 𝑙1is not an 𝛼 + 𝜀 -quotient of itself. 

Moreover, any Banach space 𝑍containing 

no quotient isomorphic to 𝑐0is an 𝛼 + 𝜀 -
quotient of itself. Indeed, if the item (c) of 

Definition 2.2 does not hold with 𝐴 =
0 𝑎𝑛𝑑 𝐵 = 𝑍, then 

 𝑍𝑛 ↠ 𝑐0(𝑍)  ↠ 𝑐0,  
for some 1 ≤ 𝑛 < 𝜔. Therefore by 

[17]
 

 𝑐0 is isomorphic to a quotient of 𝑍, which is 

an absurd. In particular, each uniformly 

convex space is an 𝛼 + 𝜀 -quotient of itself. 

The aim of this section is to prove the 

following isomorphic classification. 

Theorem 2.4. Let 𝑋be a Banach space 

having an 𝛼 + 𝜀 -quotient which is 

uniformly convex. Then for all infinite 

compact sequences of metric spaces 

𝑈𝑛+1and 𝑈𝑛+2,  
 𝐶(𝑈𝑛+1 , 𝑋)  ∼ 𝐶(𝑈𝑛+2 , 𝑋) ⇔ 𝐶(𝑈𝑛+1) ∼ 𝐶(𝑈𝑛+2). 

Before proving this theorem, we shall state 

two propositions. 

Proposition 2.5. Let 𝐴,𝐵 and 𝑍 be Banach 

spaces such that 𝑍is uniformly convex and 

ordinals 𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 . Suppose that 

(a)𝐵 ↠ 𝑍, 
(b)𝐴 ⊕𝐵𝑛 ↛ 𝑐0(𝑍), for every 1 ≤ 𝑛 < 𝜔. 
Then  

 𝐴 ⊕  𝐶(𝜉, 𝐵)  ↠  𝐶(𝜂, 𝑍)  ⟹  𝜂 < 𝜉𝜔 . 
Proof. First we will show by transfinite 

induction that for any 0 ≤ 𝛼 < 𝛼 + 𝜀 𝑎𝑛𝑑 

𝜀1 > 0  
 𝐴 ⊕  𝐶(𝛾, 𝐵) ↛ 𝐶(𝛾 + 𝜀1 , 𝑍).  (2.2) 
The hypothesis (b) covers the case 𝛼 = 0. 
Next suppose that 𝜀2 = 1, for some ordinal 

𝛼, and for all 𝜀1 > 0 (2.2)holds. Assume 

that  

𝐴 ⊕  𝐶(𝛾1 , 𝐵)  ↠  𝐶(𝜔𝜔𝛽
, 𝑍)  =  𝐶((𝛾 + 𝜀1)𝜔 , 𝑍), 

     (2.3)  

for some 𝛾1 < 𝜔𝜔𝛽
. 

Now observe that if 𝛾1 < 𝛾 + 𝜀1 then 

𝐶(𝛾 + 𝜀1, 𝐵)  ↠ 𝐶(𝛾1 , 𝐵). Moreover, if 

𝛾 + 𝜀1 ≤ 𝛾1, then by (1.2)we have 𝐶(𝛾 +
𝜀1, 𝐵)  ∼ 𝐶(𝛾1 , 𝐵). Thus, by (2.3)  

 𝐴 ⊕  𝐶(𝛾 + 𝜀1, 𝐵)  ↠  𝐶((𝛾 + 𝜀1)𝜔 , 𝑍). 
Therefore by 

[11]
 there exists an ordinal 

𝛾2 < 𝛾 + 𝜀1 such that  

 𝐴 ⊕  𝐶(𝛾2 , 𝐵)  ↠ 𝐶(𝛾 + 𝜀1, 𝑍), 
but this contradicts (2.2). 

Finally suppose that 𝛼 + 𝜀2is a limit ordinal 

and for all 0 < 𝜀2 and 𝜀1 > 0 (2.2)holds. 

Assume that  

 𝐴 ⊕  𝐶(𝛾1, 𝐵)  ↠ 𝐶(𝛾1 + 𝜀3, 𝑍),  (2.4) 
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for some 0 < 𝜀3. Pick an ordinal 𝛼 such that 

𝛾1 < 𝛾 + 𝜀1 < 𝛾1 + 𝜀3. According to (2.4)  

 𝐴 ⊕  𝐶(𝛾1, 𝐵)  ↠  𝐶(𝛾 + 𝜀1, 𝑍), 
contradicting (2.2). 

Now we pass to prove the statement of the 

proposition. Assume then that  

 𝐴 ⊕  𝐶(𝜉, 𝐵) ↠ 𝐶(𝜂, 𝑍),   (2.5) 

with 𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 . 

In view of (1.2) the spaces 𝐶(𝜔𝜔𝛾
), for 

0 ≤ 𝛾 < 𝛼 + 𝜀 , are a complete set of 

representatives of the isomorphism classes 

of 𝐶(𝜉)spaces for 0 ≤ 𝜉 < 𝛼 + 𝜀 . So, let 

𝛼be the ordinal such that  

 𝐶(𝜂)  ∼  𝐶(𝛾 + 𝜀1). 
Notice that 0 < 𝜀4 and  

 𝐶(𝜂, 𝑍)  ∼  𝐶(𝛾 + 𝜀1, 𝑍).   (2.6) 

According to (2.5) and (2.6)  

 𝐴 ⊕  𝐶(𝜉, 𝐵)  ↠  𝐶(𝛾 + 𝜀1, 𝑍).  (2.7) 

Hence by (2.2) and (2.7)we have 𝛾 + 𝜀1 ≤
𝜉and therefore 𝜂 + 𝜀4 ≤ 𝜉𝜔 . Consequently 

𝜂 < 𝜉𝜔 . □ 

Remark 2.6. Suppose that 𝑍 is isomorphic 

to a quotient of the Banach space 𝐵. It 

follows from the Bartle–Graves continuous 

selection for quotient maps 
[4]

 [p.52] that 

𝐶(𝜉, 𝑍)is isomorphic to a quotient of 

𝐶(𝜉, 𝐵)for every ordinal 𝜉 (See in 
[19]

 ) . 

Proposition 2.7. Let 𝑋 be a Banach space 

having an 𝛼 + 𝜀 -quotient which is 

uniformly convex. Then for all ordinals 

𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 ,  
 𝐶(𝜉, 𝑋)  ∼  𝐶(𝜂, 𝑋)  ⇒  𝜂 <  𝜉𝜔 . 
Proof. By hypothesis there exist a 

uniformly convex space 𝑍and 

subspaces 𝐴 𝑎𝑛𝑑 𝐵of 𝑋 satisfying (a), (b) 

and (c) of Definition 2.1. First of all observe 

that if we fix an ordinal 𝜔 ≤ 𝜉0 < 𝛼 + 𝜀 , 
since  

 𝐶(𝜉0, 𝐴)  ⊕ 𝐵𝑛 ↛ 𝑐0(𝑍), 

for every 1 ≤ 𝑛 < 𝜔, it follows from 

Proposition2.5 applied to the spaces 

𝐶(𝜉0 , 𝐴), Band 𝑍that for all ordinals 

𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 ,  
 𝐶(𝜉0 , 𝐴)  ⊕  𝐶(𝜉, 𝐵)  ↠ 𝐶(𝜂, 𝑍)  =⇒  𝜂 <  𝜉𝜔 . 
     (2.8) 

Now, pick ordinals 𝜔 ≤ 𝜉 ≤ 𝜂 < 𝛼 + 𝜀 and 

suppose that  

 𝐶(𝜉, 𝑋)  ∼  𝐶(𝜂, 𝑋).    (2.9) 

Since 𝑋 = 𝐴 ⊕ 𝐵 and 𝐵 ↠ 𝑍, by (2.9) we 

have  

 𝐶(𝜉, 𝐴)  ⊕  𝐶(𝜉, 𝐵)  ∼  𝐶(𝜂, 𝐴)  ⊕
 𝐶(𝜂, 𝐵)  ↠ 𝐶(𝜂, 𝑍). 
According to (2.8) with 𝜉0 = 𝜉 we obtain 

𝜂 < 𝜉𝜔 . □ 

Now we are ready to prove the main result 

of this paper. 

Proof of Theorem 2.4.The condition is 

clearly sufficient. Let us show necessity. 

Suppose then that 𝐶(𝑈𝑛+1, 𝑋)is isomorphic 

to 𝐶(𝑈𝑛+2 , 𝑋), for some infinite compact 

sequences of metric spaces 𝑈𝑛+1and 𝑈𝑛+2. 

We distinguish two cases: 

Case 1. 𝑈𝑛+1  and 𝑈𝑛+2are countable. Let 

𝜉and 𝜂be infinite countable ordinals such 

that 𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝜉)and 

𝐶(𝑈𝑛+2)is isomorphic to 𝐶(𝜂). Hence  

 𝐶(𝜉, 𝑋)  ∼  𝐶(𝜂, 𝑋). 
Without loss of generality we may assume 

that 𝜉 ≤ 𝜂. So, by Proposition 2.7 and (1.2) 

we infer that 𝐶(𝑈𝑛+1)is isomorphic to 

𝐶(𝑈𝑛+2). 
Case 2. 𝑈𝑛+2  is uncountable. In this case, by 

(1.1) it suffices to show that 𝑈𝑛+1is also 

uncountable. Otherwise, there exists a 

countable ordinal ξsuch that 𝐶(𝑈𝑛+1)is 

isomorphic to 𝐶(𝜉). Consequently,  

 𝐶(𝜉, 𝑋)  ∼  𝐶(𝑈𝑛+1 , 𝑋).   (2.10) 

Furthermore, it follows from (1.1)and (1.2)that  

𝐶([0, 𝜉𝜔 ]  × 𝑈𝑛+2)  ∼  𝐶(𝑈𝑛+2) 𝑎𝑛𝑑 𝐶(𝜉𝜔 )  ∼  𝐶([0, 𝜉𝜔 ]  × [0, 𝜉]). 
Therefore  

𝐶(𝜉𝜔 , 𝑋)  ∼  𝐶(𝜉𝜔 , 𝐶(𝜉, 𝑋))  ∼  𝐶(𝜉𝜔 , 𝐶(𝑈𝑛+2 , 𝑋))  ∼  𝐶(𝑈𝑛+2, 𝑋).   (2.11) 

 

Thus, by (2.10) and (2.11)we see that  

 𝐶(𝜉, 𝑋)  ∼  𝐶(𝜉𝜔 , 𝑋),  
which contradicts Proposition2.7 and the 

theorem follows. □ 

3. On the isomorphic classification of 

𝑪(𝑼𝒏, 𝒀 ⊕ 𝒍 𝒒−𝜺 (𝜞))spaces,𝟏 <  𝒒 − 𝜺 < ∞ 

The purpose of this section is to provide the 

proof of Theorem 1.2. We shall denote by 

{𝑒𝑖,𝑗 }𝑖,𝑗=1
∞  the canonical basis of 𝑙1(𝑙𝑞), i.e.,  
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  𝑎𝑖 ,𝑗𝑒𝑖,𝑗

∞

𝑖,𝑗=1

 =     𝑎𝑖 ,𝑗  
𝑞

∞

𝑖=1

 

1/𝑞∞

𝑗=1

, 

for 𝑖 all {𝑎𝑖 ,𝑗 }𝑖 ,𝑗=1
∞ ⊆ 𝑅. 

The next lemma is obtained by a gliding 

hump argument and a simple perturbation 

argument which are well-known, 
[11]

 but we 

include the proof for completeness. 

Lemma 3.1. Let 𝑋 be a Banach space and 

1 < 𝑞 < ∞. Let 𝑇 be a linear operator from 

𝑙1(𝑙𝑞)to 𝑋 ⊕ 𝑙𝑞  and 𝑃2 the natural 

contraction and projection from 𝑋 ⊕ 𝑙𝑞  onto 

𝑙𝑞 . Then: 

(a)For all double sequences {𝜀𝑖 ,𝑗 }𝑖 ,𝑗=1
∞ of 

positive numbers there exist a double 

sequence {𝑏𝑖 ,𝑗 }𝑖,𝑗=1
∞ ⊆ 𝑙𝑞  with pairwise 

disjoint finite supports and subsequences 

𝑁𝑗 ⊆ 𝑁 such that denoting 𝑁𝑗 = {[𝑖, 𝑗]}𝑖=1
∞ , 

  𝑃2  𝑇2 (𝑒 𝑖,𝑗  ,𝑗 )  −  𝑏𝑖 ,𝑗  <  𝜀𝑖,𝑗  ,  (3.1)  

for every 1 ≤ 𝑖, 𝑗 < 𝜔. 
(b)If 𝑇2 is an into isomorphism then there 

exist subsequences 𝑁𝑗 = {[𝑖, 𝑗]}𝑖=1
∞ ⊆ 𝑁, 

1 ≤ 𝑗 < 𝜔, and an isomorphism 
 𝑇2 −1from the span of {𝑒 𝑖,𝑗  ,𝑗 }𝑖 ,𝑗=1

∞ into 

𝑋 ⊕ 𝑙𝑞  such that {𝑃2  𝑇2(𝑒 𝑖,𝑗  ,𝑗 )}𝑖,𝑗=1
∞ is a 

double sequence in 𝑙𝑞with pairwise disjoint 

finite supports. 

Proof. (a) Define an order ≺on 𝑁 × 𝑁 by 

(𝑖, 𝑗)  ≺ (𝑘, 𝑙) if, and only if, 𝑖 + 𝑗 < 𝑘 + 𝑙 
or 𝑖 + 𝑗 = 𝑘 + 𝑙 and 𝑖 < 𝑘. 
Assume we already found the initial 

segments of 𝑁𝑗 = {[𝑖, 𝑗]}
𝑖=1

𝑘𝑗
for (𝑖, 𝑗)  ≺

(𝑖0, 𝑗0). We need to find [𝑖0, 𝑗0]and 𝑏𝑖0 ,𝑗0
. 

Since {𝑒𝑖,𝑗0
}𝑖=1
∞ tends weakly to zero, for 

𝑖0large enough   𝑃2 𝑖𝑇
2(𝑒𝑖0 ,𝑗0

)  < 𝜀𝑖0 ,𝑗0
/2, 

where  𝑃2 𝑖  is the contraction and 

projection onto  𝑆2 𝑖 , the finite union of the 

supports of {𝑏𝑖𝑗 }(𝑖,𝑗 )≺(𝑖0 ,𝑗0). 

Now, for all 1 ≤ 𝑛 < 𝜔, denote by ℝ𝑛  the 

natural projection of 𝑙𝑞  given by 

𝑅𝑛({𝑎𝑖}𝑖=1
∞ )  = (𝑎1, 𝑎2 , . . . , 𝑎𝑛 , 0, 0, . . . ). 

Pick 1 ≤ 𝑚 < 𝜔 strictly greater than the 

maximum of Siand such that  
   𝑃2 𝑖𝑇

2 𝑒𝑖0 ,𝑗0
 − 𝑅𝑚𝑃

2𝑇2(𝑒𝑖0 ,𝑗0
)  < 𝜀𝑖0 ,𝑗0

/2 . 

So, it suffices to define  

𝑏𝑖0 ,𝑗0
= (𝑅𝑚 −  𝑃2 𝑖)𝑃

2𝑇2(𝑒𝑖0,𝑗0
). 

(b) Fix a double sequence {𝜀𝑖 ,𝑗 }𝑖 ,𝑗=1
∞ of 

positive numbers such that  𝜀𝑖𝑗
𝑝∞

𝑖,𝑗=1 <

1/  𝑇2 −1 𝑝 , where 1/ 𝑞 − 𝜀  + 1/𝑞 = 1. 
By the item (a) there exist subsequences 

𝑁𝑗 = {[𝑖, 𝑗]}𝑖=1
∞ ⊆ 𝑁 and a double sequence 

{𝑏𝑖𝑗 }𝑖 ,𝑗=1
∞ ⊆ 𝑙𝑞  with pairwise disjoint finite 

supports and satisfying (3.1). Define the 

linear operator 𝑇 from the span of 

{𝑒[𝑖 ,𝑗 ],𝑗 }𝑖,𝑗=1
∞ 𝑡𝑜 𝑋 ⊕ 𝑙𝑞  by  

  𝑇2 −1(𝑒[𝑖,𝑗 ],𝑗 ) =  (𝐼2  −  𝑃2)𝑇2(𝑒[𝑖,𝑗 ],𝑗 )  +  𝑏𝑖𝑗  . 

Then  𝑇2 −  𝑇2 −1(𝑒[𝑖,𝑗 ],𝑗 )  < 𝜀𝑖 ,𝑗 , for 

every 1 ≤ 𝑖, 𝑗 < 𝜔. Therefore  𝑇2 −1 is an 

into isomorphism and 𝑃2 𝑇2 −1(𝑒[𝑖,𝑗 ],𝑗 )  =

𝑏𝑖𝑗 , for every 1 ≤ 𝑖, 𝑗 < 𝜔. □ 

Proposition 3.2. Let 𝑋 be a Banach space 

and 1 < 𝑞 < ∞. Suppose that 𝑋 ⊕ 𝑙𝑞  

contains a copy of 𝑙1(𝑙𝑞). Then 𝑋contains a 

copy of 𝑙𝑞 . 

Proof. Let 𝑇2 be an isomorphism from 

𝑙1(𝑙𝑞)into 𝑋 ⊕ 𝑙𝑞 . Initially observe that for 

all infinite sequences 𝑁𝑗 ⊆ 𝑁, 1 ≤ 𝑗 < 𝜔, 

{𝑒𝑖𝑗 }𝑖 ,𝑗=1,𝑖∈𝑁𝑗
∞  spans in 𝑙1 𝑙𝑞  a subspace 

isometric to 𝑙1 𝑙𝑞 .Thus, thanks to 

Lemma3.1 we may suppose that 

{𝑃2𝑇2 𝑒𝑖𝑗  }𝑖 ,𝑗=1
∞  is a sequence in 𝑙𝑞with 

pairwise disjoint finite supports. 

 

First of all notice that for any finite set 𝐴 ⊂ 𝑁 × 𝑁 and sequence {𝑎𝑛,𝑗 }𝑛,𝑗=1
∞ ⊆ 𝑅 we have  

   𝑎𝑛,𝑗
 
(𝑛 ,𝑗 )∈𝐴  𝑃2𝑇2(𝑒𝑛,𝑗 )  ≤  𝑀    𝑎𝑛,𝑗  

𝑞 
(𝑛 ,𝑗 )∈𝐴   

1/𝑞
,    (3.2) 

 

where 𝑀2 =  𝑃2  𝑇2 . 
Now pick 0 < 𝜀 < 1and 1 ≤ 𝑘 < 𝜔 

satisfying 𝑀2  𝑇2 −1 𝑘−1/ 𝑞−𝜀 < 𝜀. 
Observe that for all {𝑎𝑛 }𝑛=1

∞ ⊆ 𝑅 and 

0 ≤ 𝜀 <  𝜔 − 1  we have  

   𝑎𝑛  
1

𝑘
 𝑒𝑛 ,𝑗

𝑘

𝑗=1

 

𝑚

𝑛=1

 =    𝑎𝑛  
𝑞

 𝑚

𝑛=1

  

1
𝑞

, (3.3) 
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that is, {𝑘−1  𝑒𝑛,𝑗
𝑘
𝑗=1 }𝑛=1

∞ is equivalent to 

the 𝑙𝑞  basis. Denote by 𝑊 be the span of 

these vectors.  

Let  𝑎𝑛  
1

𝑘
 𝑇2(𝑒𝑛,𝑗 )𝑘
𝑗=1  𝑚

𝑛=1  be a vector 

of norm less than or equal to1. By (3.2)and 

(3.3)we infer  

 𝑃2  𝑎𝑛  
1

𝑘
 𝑇2 𝑒𝑛,𝑗  

𝑘

𝑗=1

 

𝑚

𝑛=1

  ≤ 𝑀2   
 𝑎𝑛  

𝑞

𝑘𝑞

 𝑚

𝑛=1

  

1
𝑞

  

 ≤
𝑀2

𝑘
1

 𝑞−𝜀 

  𝑎𝑛  
1

𝑘
 𝑒𝑛,𝑗

𝑘

𝑗=1

 

𝑚

𝑛=1

   

 ≤
𝑀2

𝑘1/ 𝑞−𝜀 
  𝑇2 −1   𝑎𝑛  

1

𝑘
 𝑇2 𝑒𝑛,𝑗  

𝑘

𝑗=1

 

𝑚

𝑛=1

 ≤ 𝜀  

Consequently, if 𝐼2 denotes the identity 

operator of 𝑋 ⊕ 𝑙𝑞 , then 𝐼2 − 𝑃2 is an 

isomorphism from a subspace isomorphic to 

𝑙𝑞  into 𝑋.  

Proof of theorem 1.2. The condition is of 

course sufficient. Let us show that it is also 

necessary. To do this, by Theorem4.2 it is 

enough to prove that 𝑙 𝑞−𝜀  (𝛤) is an 𝛼 + 𝜀 -

quotient of 𝑌⊕ 𝑙 𝑞−𝜀  (𝛤). Since 𝑙 𝑞−𝜀  is a 

uniformly convex space and (𝑙 𝑞−𝜀  (𝛤))𝑛 ∼

𝑙 𝑞−𝜀  (𝛤)for every 1 ≤ 𝑛 < 𝜔, it suffices 

to prove that  

 𝐶(𝜉, 𝑌 )  ⊕ 𝑙 𝑞−𝜀  (𝛤)  ↛  𝑐0(𝑙 𝑞−𝜀  ), 

for every 𝜔 ≤ 𝜉 < 𝛼 + 𝜀 . But if this is not 

the case, then by duality and by the 

separability of 𝑙1 𝑙𝑞  it follows that 

𝑙1(𝑌∗)  ⊕ 𝑙𝑞  contains a copy of 

𝑙1 𝑙𝑞  .Thus, Proposition 3.2 impliesthat 

𝑙1(𝑌∗) contains a copy of 𝑙𝑞 . Then, by a 

standard gliding hump argument we can 

prove that 𝑌∗contains a copy of 𝑙𝑞 , see for 

instance, 
[3]

 a contradiction. This proves the 

theorem.  

4. On the isomorphic classification 

sequence of 𝑪(𝑲,𝒀⊕ 𝒍∞(𝜞))spaces 

In this section we prove Theorem1.3. First 

we need to state the following proposition. 

Proposition 4.1. Let 𝐴 and 𝐵 be Banach 

spaces such that there exist a set 𝛬 and 

1 <  𝑞 − 𝜀  < ∞ satisfying 

(a)𝐵 ↠ 𝑙 𝑞−𝜀  (𝛬), 

(b)𝐵 ↛ 𝑐0, 

(c) for any 𝜔 ≤ 𝜉 < 𝛼 + 𝜀 and bounded 

linear operator 𝑇: 𝐶(𝜉, 𝐴)  → 𝑙 𝑞−𝜀  (𝛬), we 

have dens𝑇(𝐶(𝜉, 𝐴))  < |𝛬|. Then 𝑙 𝑞−𝜀  (𝛬) 

is an 𝛼 + 𝜀-quotient of 𝑋 = 𝐴 ⊕ 𝐵. 

Proof. Suppose that there exists a bounded 

linear operator 𝑇 from 𝐶(𝜉, 𝐴)  ⊕ 𝐵𝑛  onto 

𝑐0(𝑙 𝑞−𝜀  (𝛬)) for some 𝜔 ≤ 𝜉 < 𝛼 + 𝜀 and 

1 ≤ 𝑛 < 𝜔. 
Given 1 ≤ 𝑚 < 𝜔, we will denote by 

 𝑃2 𝑚  the natural contraction and projection 

on 𝑐0(𝑙 𝑞−𝜀 (𝛬)) onto the 𝑚-th coordinates, 

that is,  𝑃2 𝑚 : 𝑐0(𝑙 𝑞−𝜀  (𝛬))  →

𝑐0(𝑙 𝑞−𝜀  (𝛬)) defined by  
(𝑥1 , 𝑥2 , . . . , 𝑥𝑚 , 𝑥𝑚+1 , . . . )  →  (0, 0, . . . , 𝑥𝑚 , 0, 0, . . . ). 
By our hypothesis we deduce that dens 
 𝑃2 𝑚𝑇

2(𝐶(𝜉, 𝐴))  < |𝛬|, for every 1 ≤
𝑚 < 𝜔. Hence there exists a subset  𝛬 − 𝜀  
of 𝛬 with 𝜀 > 0 such that 𝑇2(𝑥)(𝛾)(𝑚)  =
0 for every 𝑥 ∈ 𝐶(𝜉, 𝐴), 𝛾 ∉  𝛬 − 𝜀  and 

1 ≤ 𝑚 < 𝜔. We identify in the natural way 

𝑐0(𝑙 𝑞−𝜀   𝛬 − 𝜀 ) as a subset of 

𝑐0(𝑙 𝑞−𝜀  (𝛬)) . Let 𝑄be the natural 

contraction and projection from 

𝑐0(𝑙 𝑞−𝜀  (𝛬)) onto 𝑐0(𝑙 𝑞−𝜀   𝛬 − 𝜀 ) So, it 

is easy to see that the following operator is 

onto 

 𝑄2𝑇2
|𝐵𝑛 ∶  𝐵𝑛  →  𝑐0(𝑙 𝑞−𝜀  (𝛬 \ 𝛬 − 𝜀 )).  

Consequently,  

𝐵𝑛  ↠  𝑐0. 
Thus, 𝑐0is isomorphic to a quotient of 𝐵. 

This contradicts (b) and the proof is 

complete.  

Proof of Theorem 1.3. Sufficiency is 

obvious. Let us see necessity. Notice that if 

𝛤is an infinite set, then by 
[15]

 we have that 

𝑙2(2|𝛤|) is isomorphic to a quotient of 

𝑙∞(𝛤). Moreover, by 
[6]

 it follows that 

𝑙∞(𝛤) has no quotient isomorphic to 𝑐0. So, 

by Proposition 4.1with 𝐵 = 𝑙∞(𝛤) and 

𝛬 = 2|𝛤|, we deduce that 𝑙2(2|𝛤|) is an 

𝛼 + 𝜀 -quotient of 𝑌⊕ 𝑙∞(𝛤). So, by 

Theorem 2.4. we are done.  

 

5. On the isomorphic classification of 

Sequence of 𝑪(𝑼𝒏)spaces 

In this section show that 𝛼 + 𝜀 -
quotient of Banach spaces can also be used 

to get the isomorphic classifications of 
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certain sequence of 𝐶(𝑈𝑛) spaces for large 

compact sequences of Hausdorff spaces 𝑈𝑛 . 

Let us start with a closely related result to 

Theorem 2.4. 

Proposition 5.1. Let 𝑋 be a Banach space 

having an 𝛼 + 𝜀 -quotient space 𝑍which is 

uniformly convex. Write 𝑋 = 𝐴 ⊕ 𝐵 as in 

Definition 2.1. Then for all infinite compact 

sequences of metric spaces 𝑈𝑛+1and 𝑈𝑛+2,  

 𝐴 ⊕  𝐶(𝑈𝑛+1 , 𝐵)  ∼  𝐴 ⊕  𝐶(𝑈𝑛+2 , 𝐵)  ⇒  𝐶(𝑈𝑛+1)  ∼  𝐶(𝑈𝑛+2). 
Proof. We consider two cases: 

 

Case 1. 𝑈𝑛+1and 𝑈𝑛+2are countable. Pick 

𝜉and 𝜂 infinite countable ordinals such that 

𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝜉) and 

𝐶(𝑈𝑛+2)is isomorphic to 𝐶(𝜂). Without loss 

of generality we may assume that 𝜉 ≤ 𝜂. 
Then,  
 𝐴⊕𝐶(𝜉,𝐵) ∼ 𝐴 ⊕  𝐶(𝜂, 𝐵) ↠ 𝐶(𝜂,𝐵) ↠ 𝐶(𝜂, 𝑍) 

Hence by Proposition 2.5. and (1.2) we infer 

that 𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝑈𝑛+2). 

Case 2. 𝑈𝑛+2is uncountable. We will show 

that 𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝑈𝑛+2)by 

proving that 𝑈𝑛+1is uncountable. Otherwise, 

there exists a countable ordinal 𝜉such that 

𝐶(𝑈𝑛+1)is isomorphic to 𝐶(𝜉). Thus,  

 

 𝐴 ⊕  𝐶(𝜉, 𝐵)  ∼  𝐴 ⊕  𝐶(𝑈𝑛+2 , 𝐵)  ↠  𝐶(𝜉𝜔 , 𝐵)  ↠ 𝐶(𝜉𝜔 , 𝑍)  
 

a contradiction by Proposition2.5. and the 

proof of proposition is complete.  

Recall that a topological space 𝑆𝑛  is said to 

be dispersed if every nonempty subset of 

𝑆contains a relatively isolated point. 

Furthermore, the topological weight of a 

topological space 𝑈𝑛 is the smallest cardinal 

𝑚 such that there exists a base of open 

subsets of 𝑈𝑛of cardinality 𝑚. 

Theorem 5.2. Let 𝛤 be an infinite set and 

𝑆𝑛  a dispersed compact sequences of 

Hausdorff space or an infinite compact 

sequences of Hausdorff space having 

topological weight strictly less than 2|𝛤|. 

Then for any infinite compact sequences of 

metric spaces 𝑈𝑛+1and 𝑈𝑛+2, 

 

(a) 𝐶(𝑈𝑛+1 × (𝑆𝑛 ⊕  𝛼 + 𝜀2 𝛤))  ∼ 𝐶(𝑈𝑛+2 × (𝑆𝑛 ⊕  𝛼 + 𝜀2 𝛤))  ⇔ 𝐶(𝑈𝑛+1)  ∼ 𝐶(𝑈𝑛+2). 
(b) 𝐶(𝑆𝑛 ⊕ (𝑈𝑛+1 ×  𝛼 + 𝜀2 𝛤))  ∼ 𝐶(𝑆𝑛 ⊕ (𝑈𝑛+2 ×  𝛼 + 𝜀2 𝛤))  ⇔ 𝐶(𝑈𝑛+1)  ∼ 𝐶(𝑈𝑛+2). 

 

Proof. Of course, the condition 𝐶(𝑈𝑛+1)  ∼
𝐶(𝑈𝑛+2) is sufficient for both statements of 

the proposition. We will show that this 

condition is also necessary. First of all 

observe that  
 𝐶(𝑈𝑛 × (𝑆𝑛 ⊕  𝛼 + 𝜀2 𝛤))  ∼  𝐶(𝑈𝑛 , 𝐶(𝑆𝑛)  ⊕ 𝑙∞(𝛤)), 

and  
𝐶(𝑆𝑛 ⊕ (𝑈𝑛  ×  𝛼 + 𝜀2 𝛤))  ∼  𝐶(𝑆𝑛)  ⊕  𝐶(𝑈𝑛 , 𝑙∞(𝛤)), 
for every compact sequences of Hausdorff 

space 𝑈𝑛 . 

Set 𝐴 = 𝐶(𝑆𝑛), 𝐵 = 𝑙∞(𝛤)and 𝑍 =
𝑙2(2|𝛤|). In view of Theorem2.4 and 

Proposition 5.1. it suffices to show that 

𝑙2(2|𝛤|)is an 𝛼 + 𝜀 -quotient of 𝑋 =
𝐶(𝑆𝑛)  ⊕ 𝑙∞(𝛤). We distinguish two cases: 

Case 1. Sis dispersed. We know that 

𝑙2(2|𝛤|)is isomorphic to a quotient of 𝑙∞(𝛤). 

On the other hand, notice that for any 

ordinal 𝜔 ≤ 𝜉 < 𝛼 + 𝜀 𝑡ℎ𝑒 compact space 

[0, 𝜉]  × 𝑆is also dispersed. Moreover, it is 

well-known that any bounded liner operator 

𝑇 from 𝐶([0, 𝜉]  × 𝑆𝑛)to 𝑙2 2 𝛤   is 

compact. 
[6,7]

 Therefore, by 
[18]

 

𝑑𝑒𝑛𝑠𝑇(𝐶([0, 𝜉]  × 𝑆𝑛))  ≤ ℵ0 < 2|𝛤|. Thus, 

it is enough to apply Proposition 4.1 with 

𝛬 = 2|𝛤|. 

Case 2. The topological weight of 𝑆𝑛  is 

strictly less than 2|𝛤|. In this case, 

𝑑𝑒𝑛𝑠𝐶 𝑆𝑛 < 2 𝛤  [18]
 and by Proposition 

4.1 with 𝛬 = 2|𝛤|we are done.  

Theorem 5.3. Let 𝛺be an infinite Stonean 

space and 𝑆𝑛a dispersed compact sequences 

of Hausdorff space or an infinite compact 

sequences of Hausdorff space having 

topological weight strictly less than 2ℵ0 . 

Then for any infinite compact sequences of 

metric spaces 𝑈𝑛+1  and 𝑈𝑛+2, 
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(a) 𝐶(𝑈𝑛+1 × (𝑆𝑛 ⊕𝛺))  ∼ 𝐶(𝑈𝑛+2 × (𝑆𝑛 ⊕𝛺))  ⇔ 𝐶(𝑈𝑛+1)  ∼ 𝐶(𝑈𝑛+2). 
(b) 𝐶(𝑆𝑛 ⊕ (𝑈𝑛+1 × 𝛺))  ∼ 𝐶(𝑆𝑛 ⊕(𝑈𝑛+2 ×𝛺))  ⇔ 𝐶(𝑈𝑛+1)  ∼ 𝐶(𝑈𝑛+2). 
 

Proof. Let us show the non-trivial 

implications. By 
[6]

 𝐶(𝛺) has a quotient 

isomorphic to 𝑙∞ . More-over, 𝑙∞has a 

quotient isomorphic to 𝑙2(2ℵ0). So, it is 

enough to proceed as in the proof of 

Theorem 5.2  

Remark 5.4. Regarding the statements of 

Theorem 2.4 and Proposition 5.1 observe 

that if 𝑋 = 𝐴 ⊕ 𝐵 as in Definition 2.1, then 

we do not have necessarily  

 𝐶(𝑈𝑛 , 𝑋)  ∼  𝐴 ⊕  𝐶(𝑈𝑛 , 𝐵), 

for every infinite compact sequences of 

metric space 𝑈𝑛 .  

Indeed, on the one hand by Proposition 3.2. 

and 
[1]

 we deduce that the 𝑙 𝑞−𝜀   space with 

1 <  𝑞 − 𝜀  < 2 is an 𝛼 + 𝜀 -quotient of 

𝑋 = 𝑙∞ ⊕ 𝑙 𝑞−𝜀  . 

On the other hand, since 𝑙2(2ℵ0 )is a quotient 

of 𝑙∞ , we conclude by Proposition 4.1that 

𝑙2(2ℵ0 )is an 𝛼 + 𝜀 -quotient of 𝑙 𝑞−𝜀  ⊕ 𝑙∞ . 
So, by the item (c) of Definition 2.1. we 

infer  

 𝐶(𝑈𝑛 , 𝑋)  ∼  𝐴 ⊕  𝐶(𝑈𝑛 , 𝐵), 𝐶(𝜔, 𝑙 𝑞−𝜀  )  ⊕ 𝑙∞  ↛ 𝐶(𝜔, 𝑙2(2ℵ0)).   (5.1) 

Consequently, we cannot have  

 𝐶(𝜔, 𝑙∞ ⊕ 𝑙 𝑞−𝜀  )  ∼  𝑙∞ ⊕  𝐶(𝜔, 𝑙 𝑞−𝜀  ), 
otherwise,  

 𝐶(𝜔, 𝑙 𝑞−𝜀  )  ⊕ 𝑙∞  ∼  𝐶(𝜔, 𝑙∞  ⊕ 𝑙 𝑞−𝜀  )  ↠  𝐶(𝜔, 𝑙∞)  ↠  𝐶(𝜔, 𝑙2(2ℵ0)), 

a contradiction by (5.1) (See in 
[19]

 ). 
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