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ABSTRACT

In This paper develop the Analytic geometry of classical gauge theories, on compact dimensional
manifolds, some important properties of fields k , the manifold structure M e C~ of the configuration
space, we study the problem of differentially projection mapping parameterization system by
constructing c~ rank n on surfaces n—1 dimensional is sub manifold space R"*

Index Terms: basic notion on differential geometry - differential between surfaces m,Nn <= r IS
called the differential manifolds- tangent and cotangent space- differentiable injective manifold-

Operator geometric on Riemannian manifolds.

INTRODUCTION

The object of this paper is to
familiarize the reader with the basic analytic
of and some fundamental theorem in
deferrable Geometry. To avoid referring to

previous knowledge of differentiable
manifolds, we include surfaces, which
contains those concepts and result on

differentiable manifolds which are used in
an essential way in the rest of the. The first
section Il present the basic concepts of
analytic Geometry (Riemannian metrics,
Riemannian connections, geodesics and
curvature). consists of understanding the
relationship  between  geodesics and
curvature, Jacobi fields an essential tool for
this understanding, are introduced in we
introduce the second fundamental from
associated with an isometric immersion and
prove a generalization of the theorem of
Riemannian Geometry this allows us to real
the notion of curvature in Riemannian
manifolds to the classical concept of
Gaussian curvature for surfaces. way to
construct manifolds, a topological manifolds
c~analytic  manifolds, stating  with
topological manifolds, which are Hausdorff

second countable is locally Euclidean space
We introduce the concept of maximal c~
atlas, which makes a topological manifold
into a smooth manifold, a topological
manifold is a Hausdorff, second countable is
local Euclidean of dimension n. If every
point pin ™ has a neighborhoodu such
that there is a homeomorphism ¢ from u
onto a open subset of rR". We call the pair a
coordinate map or coordinate system onu .
We said chart (U,¢)is centered atpeu,
»(p)=0, and we define the smooth maps
f :M — N wWhere M, N are differential
manifolds we will say that f is smooth if
there are atlases(u,,h,)on ™M and
(V,,9,) 0N N.

NOTIONS ON
GEOMETRY
2.1 Basic analytic geometry
Definition 2.1.1

A topological manifold ™ of
dimensionn, is a topological space with the
following properties:

DIFFERENTIAL
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(1) mis a Hausdorff space . For ever pair of
pointsp,geM, there are disjoint open
subsets u,v =M such that peuandgev .
(i) mis second countable . There exists
accountable basis for the topology of m .
(iii) mis locally Euclidean of dimension n .
Every point of M has a neighborhood that
ishomeomorphic to an open subset ofR".
Definition 2.1.2

A coordinate chart or just a chart on
a topological n-manifold m is a pairu.e),
Where uis an open subset of ™ and
¢:U -»U Is @ homeomorphism from u to an
open subsety =¢ U)<=R".
Examples 2.1.3

Let S"denote the (unit) n-sphere,
which is the set of unit vectors inr™:
S"={xeR™:|x|=1 with the subspace

topology, s"is a topological n-manifold.
Definition 2.1.4

The n-dimensional real (complex)
projective space, denoted byp (rR) or P/(C)),
is defined as the set of 1-dimensional linear
subspace Ofr" orc ™), P(R) or P(C)IS @&
topological manifold.
Definition 2.1.5

For any positive integern, the n-
torus is the product space T"=(S'x..xS").It

is an n-dimensional topological manifold.
(The 2-torus is usually called simply the
torus).
Definition2.1.6

The boundary of a line segment is
the two end points; the boundary of a disc is
a circle. In general the boundary of an n—
manifold is a manifold of dimension (n-1),
we denote the boundary of a manifold M as
oM . The boundary of boundary is always
empty, aom =4

Lemma 2.1.7

() Every topological manifold has a
countable basis of Compact coordinate
balls.

(i) Every topological manifold is locally
compact.

Definitions 2.1.8

Let Mpe a topological space n-
manifold. If u,y).v.»)are two charts such
thatu ~v = ¢ , the composite map
) weplip(UNV)—>y (UnNV)
Is called the transition map from ¢ toy .
Definition 2.1.9

A smooth structure on a topological
manifold ™ is maximal smooth atlas.
(Smooth  structures are also called
differentiable structure or c=structure by
some authors).

Definition 2.1.10

A smooth manifold is a pair (m, A),
where M is a topological manifold and A is
smooth structure onmM . When the smooth
structure is understood, we omit mention of
it and just say M is a smooth manifold.
Definition 2.1.11

Let M be a topological manifold.

(i) Every smooth atlases for m is contained
in a unique maximal smooth atlas.

(if) Two smooth atlases for m determine the
same maximal smooth atlas if and only if
their union is smooth atlas.

Definition 2.1.12

Let M be a smooth manifold and let
pbe a point ofm. A linear map
x:c*M) RIS called a derivation at pif it
satisfies:

(2) X (fg) =[(f(P)Xg)+(g(p)Xf)]
Forall ,gec=(m). The set of all derivation
of c-(wyatpis vector space called the
tangent space towm at p, and is denoted by [
7,m ]. An element of 1 m is called a tangent
vector at p.

Lemma 2.1.13

Letmbe a smooth manifold, and
suppose peM and X eT,M If f is a cons and
function, thenxf=o.
X(fp)=0.
Definition2.1.14

If » is a smooth curve (a continuous
map y:J->M, whereJ cRris an interval) in a
smooth manifold m , we define the tangent
vector toyatt. 3 to be the vector

»(t) :y*(% l, j eT,,M , where [%t]k is the

Iff(p)=g(p=0, then
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standard coordinate basis fort r. Other
common notations for the tangent vector to

y are {f(tc),%(tn)} and [‘i_f |J . This tangent

vector acts on functions by:
wive (9 e 9y (po den)
(©) y(ta)f—[y*dtl.jf—dtl. (fer) (t)

dt
Definition 2.1.15

Let vand w be smooth vector fields
on a smooth manifoldm . Given a smooth
function f:m - r, we can apply vto fand
obtain another smooth functionvf, and we
can apply w to this function, and obtain yet
another smooth functionwv)f =wf). The
operation f—-wvV f, however, does not in
general satisfy the product rule and thus
cannot be a vector field, as the following for

example shows let V:(%Jand W:(%}on

R", and let f(xy)=x g(x,y)=y. Then direct
computation shows thatvw (s g)=1, while
(fYvwg+gVvwf)=0, SOVWIS not a
derivation of c~(r*). We can also apply the
same two vector fields in the opposite order,
obtaining a (usually different) functionwyv f
. Applying both of this operators to f and
subtraction, we obtain an operator
[V,.w]:Cc”(M)—>C~(M), called the Lie bracket
of vandw, defined by
VWIf = (vw)f—(v)f. This operation is
a vector field. The Smooth of vector Field is
Lie bracket of any pair of smooth vector
fields is a smooth vector field.

Lemma 2.1.16

The Lie bracket satisfies the following
identities for allv,w,x e (M) . Linearity:

[ av+bW,X]=a [V,X]+b[W,X]
[ X,aV +bW J=a [X,V]+b[X ,W].
(i) Ant symmetry[v,w]l=- [W,V].

(i) Jacobi

VLW, X J1+[W,[XV]]+[X,[V,W] ]=0
For f,g ec=(m) [fV.gW]=fg[VW]+(fVgW-(qW )V
2.3 Convector Fields

Let v be a finite — dimensional vector
space over R and let v* denote its dual
space. Then v~ is the space whose elements
are linear functions from v to R, we shall

Va,beR,{

identity

call them Convectors. If s<v” then o:v >R
for the any vev , we denote the value of &
on v by o(v) or by(,c). Addition and
multiplication by scalar in v* are defined by
the equations:

{o+0,) V) = aV)+0,(v), (@0)(V)=a (& (v) )i
Where veV ,o,acev’ andacR.
Proposition2.3.1

Let v be a finite- dimensional vector space.
If (g..E)is any basis for v, then the

convectors («',...,@") defined by.

i 1 if i=j
(5) m(E,):&,:{o y e
Form a basis forv*, called the dual basis to
(E,) .Therefore, dimv* =dimV .

Definition 2.3.2

Ac’ - Convector field « onm,r>o0,
is a function which assigns to each gem a
convector o, T;(M) in such a manner that

for any coordinate neighborhood u,g with
coordinate framese,..g,, the functions
o(E), i=1...n are of class cron u. For
convenience, "Convector field” will mean
C” —convector field.
2.4 The Exponential
Coordinates

We have already seen that there are
many differences between the classical
Euclidean geometry and the general
Riemannian geometry in the large. In
particular we have seen examples in which
one of basic axioms of Euclidean geometry
no longer holds. Two distinct geodesic (real
lines) may intersect in more than one point.
The global topology of the manifold is
responsible for this “failure”. In this we will
define using the metric some special
collections to being Euclidean. Let (M,g)
be Riemannian manifold andu, an open
coordinate neighborhood with coordinate
(x',...x").We will try to find a local change
in coordinate (x —y') in which the
expression of the metric is as close are to
the Euclidean metric g, =i, jdy'dy’. Let
geu, be the point with coordinate (0,...0)
via a linear we may as well assume that
g;;(@=i,j. We would like “spread” the

Map Normal
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above equality to an entire neighborhood of
q. To achieve this we try to find local
coordinates y’ near q such that in these
new coordinates the metric is Euclidean up
to order one i,e .

agi

9, (@) =— (@
(6) >
:2;/1 = gi (@=0,Vv:ijkeg

We now describe a geometric way of
producing such coordinates using the
geodesic flow .Denote as usual the geodesic
from g with initial direction X eT,(M) . By

X, () Not the following simple fact L

X ev . Hence, there exists a small
neighborhood v of T,(M), Such that, for

any x v, the geodesic X (t) is defined for
all |t|<1 .we define the exponential map at

qg.
exp, VcT(M)->M , X - X @)

The tangent spaceT, (M) is a

Euclidean space, and we can define
D,(r)=T,(M), the open “disk” of radius r
centered at the origin we have the following
result centered at the origin .we have the
following result

In particular, dx'(X,)=h", that is, dx’
measures the change in theis coordinate of a
point as it moves from the initial to the
terminal point of x_. The preceding formula

may thus be written.

(7) df(xa):[%ldxl(xa)+...+(%j dx"(X, )

a

This gives us a very good definition
of the differential a function on U cR"; is a
field of linear functions which at any point a
of the domain of f assigns to each vector X,
a number. Interpreting  x.,as the
displacement of the n independent variables
froma, that is, a as initial point and a+h as
terminal point. df(x,)a approximates
(linearly) the change in f between these
points.
Definition 2.4.2

A convector tensor on a vector space
v is simply a real valued y,....v,) of

several vector variables v,....,v, ofv, linear
in each separately.(i.e. multiline). The
number of variables is called the order of
the tensor. A tensor field 4 of order r on a
manifold m is an assignment to each point
peM Of a tensor 4, on the vector space
T.(M), which satisfies a suitable regularity
condition c°,c',orc* as P varies onm .
Theorem 2.4.3

With the natural definitions of
addition and multiplication by elements of
R the set)r of all tensors of order (r,s)on
v forms a vector space of dimensionn™.
Theorem 2.4.4

The maps A and S are defined on
(M) a c-manifold and(M) the c~
covariant tensor fields of order r , and they
satisfy properties there. In these cases of (c),
F:"(N)— "(m) is the linear map induced by
a c*mappingF:M —N.
Definition 2.4.5

Let v be a vector space and ¢pev
are tensors. The product of oand v, denoted
p®y IS a tensor of orderr+s defined by :
POYMV, Vv VeV ) = OV VW (Vi V) -

The right hand side is the product of
the values of » and y .The product defines a
mapping (p.y) » p @y 0F X" (V) - ().
Theorem 2.4.6

The product "(v)o'(v) — ™(v) just
defined is bilinear and associative. If
(e",.....0")is @ basis of.
Definition 2.4.7

Carton’s wedge product, also known
as the exterior Product, as the ant symmetric
tensor product of cotangent space basis
elementsdxady=1/2 (dx®dy—dy®dx) = —dy  dx .
Note that, by definition, dxadx=0. The
differential line elementsdx and dy are
called differential 1-forms or 1-form; thus
the wedge product is a rule for construction
g 2-forms out of pairs of 1-forms.
Remark 2.4.8

Let «, be an element of A" «,, 8, an

element of A*. Then(a,s,)=(0"(5, ra,).
Hence odd forms ant commute and the
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wedge product of identical 1-forms will
always vanish.
Definition 2.4.9

A topological space M is called
(Hausdorff) if for all x,yewm there exist
open sets such that xeu and yev and
UnV =¢
Definition 2.4.10

A topological space ™ is second
countable if there exists a countable basis
for the topology on M .
Definition 2.4.11

A topological space W™ is locally
Euclidean of dimension n if for every point
x e M there exists on open set U em and
open set wcR"so that uand wis
(homeomorphism).
Definition 2.4.12

A topological manifold of dimension
n is a topological space that is Hausdorff,
second countable and locally Euclidean of
dimension N.
Definition 2.4.13

A smooth atlas A of a topological
space M is given by:
(i) An open covering {u }_ Where U, =M
Openand m = (o, U,)
(i) A family {g U, —>W, }_ of
homeomorphism  ¢,onto opens subsets
W, = R" s0 that if U, nU, = ¢ then the map
$U, U)o, U, nU,)is
(Adiffoemorphism)
Example 2.4.14

The stereographic is map zon
7:82 > {N}onto R?the noth pole (0,0,
pesS?—{N},z(p)is defined to be the
point at which line Nand p intersects the
Xy-plan 7z:8S2 > {N}—> RIS
“diffeomorphism” to do so write explicitly
in coordinates and solute for ~*

7(p)

Fig. (1): the diffeomorphism

Definition 2.4.15

A smooth structure on a Hausdorff
topological space is an equivalence class of
atlases, with two atlases Aand B being
equivalent if for (U,,¢)e Aand (v,,\¥;)eB
with U, nV, = ¢ then the transition map

U AV,)> U V) is a
diffeomorphism (as a map between open
sets of R").

Definition 2.4.16

A smooth manifold M of dimension
n is a topological manifold of dimension n
together with a smooth structure.
Definition 2.4.18

A map F:M—>Nis called a
diffeomorphism if it is smooth objective and
inverse F*:N — M is also smooth.
Definition 2.4.19
A map F is called an embedding if F is an
immersion and homeomorphism onto its
image
Definition 2.4.20

If F:M — N is an embedding then
F(M) is an immersed sub manifoldsof N .

Example 2.1.21
The vector function as vector fields
onR c E, the function f,(t)is vector fields

r=tu+a , te RIS parameterizations u=uy,
on line a=a, is vector as point on line L.
r =r(t) =(tu, +a,tu, +a,,tu, +a;)

P 0

=

»
>

Fig.(2) : vector fields
2.5: Tangent space and vector fields
Let c~(m,N) be smooth maps from

M and N and let c=(m)smooth functions

on Mis given a point pe M denote,
c~(p) is functions defined on some open
neighborhood of p and smooth at p .
Definition 2.5.1
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() The tangent vector X to the curve
c:(-¢,6)>M at t=0is the map
c(0):C~(c(0)) — R given by the formula.

(8) {X(f):c(O)(f):(d(Lto C)j vf eC“’c(O)}

(i) A tangent vector X at pemis the
tangent vector at t=o0o0f some curve
a:(—&,&)— M with a(0) = p this is
X =a'(0):C”(p) > R.
Remark 2.5.2

A tangent vector at p is known as a
liner function defined on c=(p)which
satisfies the (Leibniz property)
(9) {X(f g)=X(f)g+ f X(g)

Vv f,geC”(p)

Differential 2.5.3

Given Fec*(M,N)and pe M and
X eT,M choose a curve a:(-¢¢—Mwith
ac(0) = pand «’(0)= X this is
possible due to the theorem about existence
of solutions of liner first order ODEs , then
consider the map
., :T,M — T_ ., N mapping
X = FE., (X)=(Foa)'(0), this is liner map
between two vector spaces and it is
independent of the choice of « .
Definition 2.5.5

The liner map F., defined above is
called the derivative or differential of F at
p while the image F.,(X) is called the push
forward X at p e m Definition 2.5.6
Given a smooth manifold ™M a vector field
vis a map V:M —TM mapping
p—>V(p)=V,and v is called smooth if it
is smooth as a map from M to T™ .

X (M) Isan R vector  space  for
Y,Z e X(M) , P = M and

f smooth Element of T.M are called

cotangent vectors or tangent convectors at
p.
(i) For f:M —Rsmooth the composition

TM—>T,,R=Ris called (af ), and
referred to the differential of f .Not that
df, eT,M s it is a cotangent vector at P .

(i) For a chart U.#.x')of Mand peuU
then {dx'} is a basis of T;M in fact{dx'}

is the dual basis of { d—i}n .
dx a

Definition 2.6.1
The elements in the tensor product

V=(V®.0Vev ®.eV)ae called
tensors or r-contra variant, s- contra
varianttensor.
Remark 2.6.2

The Tensor product is bilinear and
associative however it is in general not
commutative that is (T, ®T,)=(T, ®T,)in
general.

Definition 2.6.3

T eV/ is called reducible if it can be
written in the form
T=V, ®.0V,®L'®..® L for.

V,®V, ,LleV™ for 1<i<r,l<j<s,
Definition 2.6.4

Choose two indices (i.i) where
1<i<r ., l<j<sfor any reducible tensor
T=V,®..9V,)®'®...®L2)|et C/(T)eV/
We extend this linearly to get a linear map
c’:(v; -V )which is called tensor-
contraction.

Definition 2.6.5

Let F:M — Nbe a smooth map
between two smooth manifolds and
we F(Tk"N )be a k covariant tensor field we

define a K covariant tensor field F*wover

a,beR,(aY +bz), =av, +bz_ and for M by.
f eC*(M),Y e X(M)define fY:M >TM 1 (FW), (e ) = We ) (Fep () P, ()
mapping. (11) W,V €T,M
(100 1pP—=>(fY), =Ff(P)Y, | In this case F-wis called the pullback of
2.6: Cotangent smooth n-manifolds why F .
Let M be a smooth n-manifolds and ~ Example 2.6.7

peM We define cotangent space at P The tangent bundle section is
denoted by T,M to be the dual space of the  function f:R" —>R™js differential or
tangent space at P:T,(M)={f:T,M >R}
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tangent map as point P on tangent felids
df (p) is image df, .
df ,(v) =V,,, ,C=f(C),peC — f(p)eC

2.7: Integration of differential forms

iwwis well defined only if ™M is
orient able dim(M)=n and has a partition
of unity and w has compact support and is a
differential n-formon ™M

Example 2.7.1
The circular helix on curve is parameters on

Definition 2.7.2
A pair (M,g)of a manifold ™M equipped
with a Riemannian metric gis called a

Riemannian manifold.
Definition 2.7.3
Suppose (M, g)is a Riemannian manifold

and p e m we define the length ( or norm)
of a tangent vector veT M to be

g(-)=(.yand the
angle v,w between v,weT M (v=0=w)by

<v,w>p

[vIwl] )

|v|= <v,v>p Recall

(12) [cos(v,w)z

Examples 2.7.4

(i) Induced metric

Let (mM,g)be a Riemannian manifold and
f :N — (M, g)an immersion where N is a
smooth manifold ( that is f is a smooth
map and f is injective ) then induced metric
on N is defined .

(14) {(fg)p(v,w)=gf<p>[(f*(v>),(f*(w))]

VV,WeTpN,pe N

The induced metric S"sometimes
denoted (g,.) |,. from the Euclidean space
R™and g, by the inclusion i:s? - R""*
is called the standard (or round) metric on
S"clearly iis an immersion .Consider
stereographic ~ projection s? »R%*and
denote the inverse map u:R? — s2then
u'g.. . Given the Riemannian metric for
R?.

(iii) Product metriclf(™m,,g,), (M,,g,)are
two Riemannian manifolds then the product
M, xM,admits a Riemannian metric

g=g,®g,Iis called the product metric
defined by .
(15) g(u1 ®u2'vl @Vz): 91(u1’V1)@ gZ(UZ’VZ)
g(ul@UZ’VJ.@VZ):gl(ul’vl)C_B gz(u21vz) .
Where u,,v, e T, M, for i=1,2,....we use the
factthatT, , (M,xM,)=T M, ®&T,M,.
(iv)Warped product Suppose (M,,g,),
(M,,g,)are two Riemannian manifolds
then (M,xM,,q,® f2g,)is the warped
product of g,,g9,or denoted (M,,g,) %,
(M,, g,)where f:M, >Ra  smooth
positive function is.
(16) {(gl1 ® f2g,),, (U, Du,.v, G_)Vz)}
=9, (u,v)® f(p)g, (v,,w,)

Definition 2.7.6

A smooth map f:(M,g)—(N,h)
between two Riemannian manifolds is

called a conformal map with conformal
factor 2:(M > R)if(f'h)=2g A

conformal map preserves angles that is

(i).Euclidean metric (canonical metric) (vow)=(£.(v), f.w) )for all u,veT,M and
9ew ONRT.
i j 1 1 n n p <M )
(13) Op =6, X' ®@dx! =dx” @ dx” +...+dx" ®dx Example 2.7.7
= dx'dx" +...+ dx"dx"
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S® <= R*We consider stereographic
projections?/p, — R?. As stereographic
projection is a diffeomorphism its inverse
u:R — S/ p, is aconformal map. It follows
from an exercise sheet that U is a conformal
map with conformal factor
(X, y) :2/(1+ x? + yz).

Definition 2.7.8

A Riemannian manifold (M ,g )is
locally flat if for every point pe M there
exist a conformal  diffeomorphism
f :U —V between an open neighborhood
uof pand v = Rr"of f(p).

Definition 2.7.9

Given two Riemannian manifold
(M ,g )and (N,h)they are called isometric
of there is a diffeomorphism f:M — N
such that f*h=gsuch that a differ-
morphism f is called an isometric.

Remark 2.7.10

In  particular an  isometrics
f :(M,g)— (M, qg) is called an isometric of
(M, g). All isometrics on a Riemannian

manifold from a group.
Definition 2.7.11
(M, g),(N,h)y Are called locally

isometric if for every point pe M there is
an isometric f:U —V from an open
neighborhoodu of pin ™M and an open

neighborhoodvVv of f(p)inN.
Definition 2.7.12

Suppose  f:(M,g)—(N,h)is an
immersion then f is isometric if f'h=g.
Definition 2.7.13

A bundle metric hon the vector
bundle (E,M,x)is an element of
r(E” ® E*)which is symmetric and positive
definite.
2.8: Differentiable injective manifold

The basically an m-dimensional
topological manifold is a topological space
M which is locally homeomorphism to rR™
definition is a topological space M s called
an m-dimensional (topological manifold) if
the following conditions hold.
(1) M is a hausdorff space.

(i) For any pemthere exists a
neighborhood u of P which IS
homeomorphism to an open subsetv = R™
(iii) M has a countable basis of open sets,
coordinate charts (U, )

(iv) is equivalent to saying that p<m has a
open neighborhood U <P homeomorphism
to open disc D™in R™, axiom (V) says that
M can covered by countable many of such
neighborhoods , the coordinate chart (U, )
whereu are coordinate neighborhoods or
charts and ¢ are coordinate .

A homeomorphisms , transitions
between different choices of coordinates are
called transitions maps ¢,;, =¢, oo, , which
are again homeomorphisms by definition ,
we usually write p=¢*(x),¢:U >V cR"
as coordinates foru and
p=¢*(x),p:V >UcM as coordinates
for u , the coordinate charts (U, ) are
coordinate neighborhoods, or charts , and ¢
are coordinate homeomorphisms, transitions
between different choices of coordinates are
called transitions maps o, = ¢, ¢, wWhich
are again homeomorphisms by definition ,
we usually x=¢(p),p:U >V cR"as a
parameterization u. A collection
A={(.U,}_ of coordinate chart with
M=u,U, is called atlas form . The
transition maps ¢;; atopological space M is

called (hausdorff ) if for any pair p,qe ™M,
there exist open neighborhoods p<u and
qeU’ such thatu ~nu’ = ¢ for a topological
space M with topology = <u can be written
as union of sets in g, a basis is called a
countable basis g is a countable set .
Definition 2.8.1

Let X be a set a topology u for X is
collection of X satisfying.

(i) » And x arein U

(i) The intersection of two members of u is
inu

(iii) The union of any number of members
uis inu. The set x with u is called a
topological space the membersu <u are
called the open sets. let X be a topological

International Journal of Research & Review (www.gkpublication.in) 85
Vol.3; Issue: 2; February 2016



space a subset N = x with xe N is called a
neighborhood of x if there is an open set
U with xeu =N, for example if x a
metric space then the closed ball D, (x) and
the open ball D_(x) are neighborhoods of
x a subsetc is said to closed if x\cis
open
Definition 2.8.2

A function f:X —Y between two
topological spaces is said to be continuous if
for every open set u of vy the pre-image
f*U)isopenin x .
Definition 2.8.3

Let x and Yy be topological spaces
we say that x and vy are homeomorphism
if there exist continuous function such that
fog=id,and go f =id, we write X =Y
and say that f and g are homeomorphisms
between x and Yy , by the definition a
function f : X —Y is a homeomorphisms if
and only if .
(i) f isaobjective.
(i) f is continuous
(iii) £ *is also continuous.
Definition 2.8.4

A differentiable  manifold of
dimension Nis a set m and a family of
injective mapping x, = R" — M of open sets
u, € R"into m such that.
Nu,x,(u,)=M
(i)For any «, g with x,(u,) " x,(u,)
(iii)the family (u,,x,) is maximal relative to
conditions the pair (u,,x,) or the mapping
x,, With pex, (u,)is called a
parameterization , or system of coordinates
of M ,u,x,(u,) =M the coordinate charts
(U, ) Where U are coordinate
neighborhoods or charts, and ¢ are
coordinate homeomorphisms transitions are
between different choices of coordinates are
called transitions maps.
Pi.j :(goj °§0i71)

Which are anise homeomorphisms
by  definition, we usually  write
x=¢(p),»:U >V <= R"collectionu and

p=p(x),p "tV >UcM for coordinate

charts with is m =uu, called an atlas for
m of topological manifolds. A topological
manifold m for which the transition maps
@, =(p, o) for all pairse,, ¢, in the atlas
are  homeomorphisms is called a
differentiable, or smooth manifold, the
transition maps are mapping between open
subset of R™, homeomorphisms between
open subsets of R™arec”maps whose
inverses are also c maps , for two chartsu,

and U, the transitions mapping.

D :(¢j 0@71):@(Ui muj) _)¢j(ui mUj)

And as such are homeomorphisms between
these open of R™, for example the
differentiability (" - o *)is achieved the
mapping (¢"- () *) and (@ - »*) Which are
homeomorphisms since (A= A") by
assumption this establishes the equivalence
(A= A"), for example let Nand ™M be

smooth manifolds n and m
respecpectively, and let f:N—mM be
smooth mapping in local coordinates

f'=(pofop?):pU)—>w(V), with respects
charts (U,p)and (,y), the rank of f at
p e N is defined as the rank of f'at ¢(p)
l.e.rk(f), =rk(d f7),,, is the
Definition 2.8.5

Let 1,be the identity map onR",
then { R", 1, }is an atlas for R" indeed, if
U is any nonempty open subset of R" , then
{u,1,}is an atlas for u so every open

subset of R"is naturally a ¢~ manifold.
Example 2.8.6

The n-space is a manifold of
dimension n when equipped with the atlas

A ={U,,0),V,w).t<i<n+1 jwhere for
each 1<i<n+1.

. Ui:{(xi,....,xml)esn,xlzo}q;i(xl, ..... X1
( ) :(Xl""’Xi—l’xi+l""’xn+1)

o(p)

OERATOR GEOMETRIC ON

RIEMANNIAN MANIFOLDS

3.1 Vector Analysis one Method Lengths]
Classical vector analysis describes

one method of measuring lengths of smooth
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paths inR®if v:[01]— R®is such a paths,
then its length is given by length v =v(t)dt .
Where [v] is the Euclidean length of the
tangent vector(t), we want to do the same
thing on an abstract manifold, and we are
clearly faced with one problem, how do we
make sense of the length|v(t)| obviously , this
problem can be solved if we assume that
there is a procedure of measuring lengths of
tangent vectors at any point on our manifold
The simplest way to do achieve this is to
assume that each tangent space is endowed
with an inner product. (Which can vary
point in a smooth).

Definition 3.1.1

A Riemannian manifold is a pair (M.g)
consisting of a smooth manifold m and a
metric g on the tangent bundle, i.e a smooth
symmetric positive definite tensor field on
M . The tensor g is called a Riemannian
metric on M . Two Riemannian manifold
are said to be isometric if there exists a
diffeomorphism¢:M, —-M,  such that

9 :9,=0,If(M.g) is a Riemannian
manifold then, for any xe M the restriction
g, T,(M)xT,(M,)>R. Is an inner

product on the tangent space T, (M) we will

frequently wuse the alternative notation
(-,), =9,(,-) the length of a tangent vector

veT, (M) is defined as usual
Iv]. = g,(v,v)'?. Ifv[ab]>M is a piecewise
smooth path, then we defined is length by
L(v)=i|v(t)|dt. If we choose local

coordinates (x',....x") onm , then we get a
local description of g as.

(18) [g = g, (ax', ax’ )],[9.1 :9[ o ﬂ

ox, ' ox;

Proposition 3.1.2

Let be a smooth manifold, and
denote by R,, the set of Riemannian metrics
on M then R,, IS a non —empty convex cone
in the linear of symmetric tensor
Example 3.1.3

Let (M, g) be Riemann manifold and
S<M a sub manifold ifs - M , denotes
the natural inclusion then we obtain by pull

back a metric ons,g®=ig"=(g/S). For
example, any invertible symmetric(nxn)
matrix defines a quadratic hyper surface in
R" byH,={xeR",(A,x)=1}where [,-]
denotes the Euclidean inner onR", H, has

a natural.

Example 3.1.4

The Poincare model of the hyperbolic plane
is the Riemannian manifold (D,g) where

D is the unit open disk in the plan R" and
the metric g is given by.

(18) 4 :[ﬁ}(dx >4 dy? )

Example 3.1.6
Consider a lie group G, and denote by L,

its lie algebra then any inner product(-,-)

on L., induces a Riemannian metric

h=(-,-), on G defined by.

(19) [l L
Where (L), :T,(G)—>T,(G) is the

differential at g eG of the left translation

map L, . One checks easily that check easily

that the correspondence Geg—(-,-) is a

smooth tensor field, and it is left invariant
(i) Lyh=h vgeG. If G is also

compact, we can use the averaging
technician to produce metrics which are
both left and right invariant.
3.2 The Levi-Cavite Connection

To continue our study of
Riemannian manifolds we will try to follow
a close parallel with classical Euclidean
geometry the first question one may ask is
whether there is a notion of “straight line”
on a Riemannian manifold. In the Euclidean
space R3 there are at least ways to define a
line segment a line segment is the shortest
path connecting two given points a line
segment is a smooth path v:[01]— R®

satisfying vi(t) =0. Since we have not said
anything about calculus of variations which
deals precisely with problems of type.

(i) We will use the second interpretation as
our starting point, we will soon see however
that both points of view vyield the same
conclusion.
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(i) Let us first reformulate as know the
tangent bundle of R®is equipped with a
natural trivialization, and as such it has a
natural trivial connectionv® defined by.
v°(6,)=0v:i, j Where,

(19)  (v°o,=0)vi,j (aj:a%i’vi :Va]

All the Christ off symbols vanish, moreover,
if g, denotes the Euclidean metric, then.
(20) {(Voi go)(aj,ak):v?jk *go(v?ajvak)* 90(5J'V06kt
VoV (t)=0

So that the problem of defining
“lines” in a Riemannian manifold reduces to
choosing a “natural” connection on the
tangent bundle of course, we would like this
connection to be compatible with the metric
but even so, there infinitely many
connections to choose from. The following
fundamental result will solve this dilemma.
Proposition 3.2.1
Let(M,g) be a Riemannian manifold for
any compact subset —Tm there exists
g=o0such that for any (x,X )ekthere
exists a unique geodesic V =V, X :(-s,£)—>M
such thatv(0) =x,v(0) = X

One can think of a geodesic as
defining a path in the tangent bundle
t— (V(),V(t)). The above proposition
shows that the geodesics define a local flow
$ ONT(M) by
(1) S (xX)=V®O.NV®)) VX
Definition 3.2.2
The local flow defined above is called the
geodesic flow the Riemannian manifold
(M,g) when the geodesic low is global
flow i,e anyv, X is defined at each moment
of t for any(x,X)eT(M), then the
Riemannian manifold is call geodetically
complete .
Definition 3.2.3
Let L be finite dimensional real lie algebra,
the Killing paring or form is the bilinear
map.
(22) HK:LXL—>R,K(X,Y):—tr(ad(x).ad(Y))}

v:X,Yel

The lie algebra L is said to be semi simple
if killing paring is a duality, a lie groupG is

called semi simple if its lie algebra is semi
simple.

Proposition 3.2.4

Let(M,g) andq e M as above .Then there
exists r > 0 such that the exponential map.(
exp ;:D,(r)— M Is a diffeomorphism on

to. The supermom of all radii r with this
property is denoted P, (q) .

Definition 3.2.5

The positive real number P, (q) is called

the infectivity radius of M at g the infemur.
Pu :infq [ Pu (Q)]
Is called the infectivity radius of M

Lemma 3.2.6
The Freshet differential atoeT (M) of the

exponential map, D,exp, :T,(M)->Texp, ()M =T,(M) .
Is the identity T,(M) — T, (M)

Theorem 3.2.7
Letg,r ande as in the previous and

consider the unique geodesic r :[0,1]—> M of
length< &, joining two points B, (q) .if
w:[01]—>M is a piecewise smooth path
with the same endpoint as then.

(23) i|(t)|dtsz|w(t)|dt

With equality if and only if
w([0a1])=([01] Thus ¥ is the shortest path,
joining its endpoints.

3.4: Riemannian Geometry

Definition 3.4.1 Riemannian Metrics
Differential forms and the exterior
derivative provide one piece of analysis on
manifolds which, as we have seen, links in
with global topological questions. There is
much more on can do when on introduces a
Riemannian metric. Since the whole subject
of Riemannian geometry is a huge to the use
of differential forms. The study of harmonic
from and of geodesics in particular, we
ignore completely hare questions related to
curvature.

Definition 3.4.2 Metric Tensor

In informal terms a Riemannian
metric on a manifold M is a smooth
varying positive definite inner product on
tangent spaceT,. To make global sense of

this note that an inner product is a bilinear
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form so at each point x , we want a vector
in tensor product. T' ®T, We can put, just as
we did for exterior forms a vector bundle
striation ON.T'M®T'M=UT ®T,. The

conditions we need to satisfy for a vector
bundle are provided two facts we used for
the bundle of p-forms each coordinate
system (x,,........, x,)  defilance a  basis
~ for each T1in the coordinate
neighborhood and  the n’element.
dx, ®dx, 1<i,j<n. Given a corresponding
basis forT; ®T;. The Jacobean of a change
of coordinates defines an invertible linear
transformation. J:17, -7 And we have a
corresponding.
(24) JI@iI=(T7aT))> (T; =T))
Definition 3.4.3 Local Coordinate
System A Riemannian metric on manifold
M is a section g of T &t which at each
point is symmetric and positive definite. In a
local coordinate system we can write.
(25 9 == 9g;(x) dxdx,
Where g4 (x=g,,x) and is a smooth
function, with 4 (x) positive definite. Often

the tensor product symbol is omitted and
one simply writes. g = > g; (x)dx;dx;
1]

Definition 3.4.4

A diffehomorphismr:m —nN, between two
Riemannian manifolds is an isometric if
F'gy =9gn

Definition 3.4.5

LetM a Riemannian  manifold and
7:[01]—>™M a smooth map ie a smooth
curve inmMm . The length of curve is

L(7)=Z g (y.,») dt. Where y'(t)=Dy‘[ d J J

dt
with this definition, any Riemannian
manifold is metric space define.
(26)  d(x,y)=inf {L()eR:yt)=y }
are Riemannian an manifold space.
Proposition 3.4.6
Consider any manifold M and its cotangent
bundle T*(M), with projection to the base
p:T"(M)— M, let X be tangent vector to

T"(M)at the point¢£ T, M then

D,(X)eT (M) SO that o(X)=¢,(D,(x))
defines a conical a conical 1-form¢ on
T*(M)in coordinates (x,y)— >y, dy the

projection p IS p(x,y) =x SO if
o 2 \ so if given take
x {Zai _]{zbi EJ g

X,
the exterior derivative w=—dg =3>dx A dy,
which is the canonical 2-from on the
cotangent bundle it is non-degenerate, so
that the map X — (i xw) from the tangent
bundle of T*(m) to its contingent bundle is
isomorphism. Now suppose f is smooth
function and T" (M) its derivative is a 1-
form do. Because of the isomorphism a
above there is a unique vector field x on
T"(M)such thatdf =(ixw) from the g

another function with vector field v ,
Definition 3.4.7

The vector field x on T*(M)given by
I,w=dH is called the geodesist flow of the
metric g

Definition 3.4.11

If y:(ab)->T"(M)Is an integral curve of the
geodesic flow. Then the curve p(y) in (M)

is called ageodesic. In locally coordinates, if
the geodesic flow.

T,M at every point pof ™M, thenT,M is

isomorphic to MxR"m here isomorphic
means that T™ and M xR" are

homeomorphism as smooth manifolds and
for everypem, the homeomorphism
restricts to between the tangent space T,M

and vector space {P, }xR".

GET PEER REVIEWED

The basic notions on analytic
geometry knowledge of calculus, including
the geometric formulation of the notion of
the differential and the inverse function
theorem. The differential Geometry of
surfaces with the basic definition of
differentiable manifolds, starting with
properties of covering spaces and of the
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fundamental

group and its relation to

covering spaces.
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