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ABSTRACT 
 

In This paper develop the Analytic geometry of classical gauge theories, on compact dimensional 

manifolds, some important properties of fields k , the manifold structure CM of the configuration 

space, we study the problem of differentially projection mapping parameterization system by 

constructing C  rank n  on surfaces 1n  dimensional is sub manifold space 1nR . 

 

Index Terms: basic notion on differential geometry - differential between surfaces RNM , is 

called the differential manifolds- tangent and cotangent space- differentiable injective manifold- 

Operator geometric on Riemannian manifolds.  

 

INTRODUCTION 

The object of this paper is to 

familiarize the reader with the basic analytic 

of and some fundamental theorem in 

deferrable Geometry. To avoid referring to 

previous knowledge of differentiable 

manifolds, we include surfaces, which 

contains those concepts and result on 

differentiable manifolds which are used in 

an essential way in the rest of the. The first 

section II present the basic concepts of 

analytic Geometry (Riemannian metrics, 

Riemannian connections, geodesics and 

curvature). consists of understanding the 

relationship between geodesics and 

curvature, Jacobi fields an essential tool for 

this understanding, are introduced in we 

introduce the second fundamental from 

associated with an isometric immersion and 

prove a generalization of the theorem of 

Riemannian Geometry this allows us to real 

the notion of curvature in Riemannian 

manifolds to the classical concept of 

Gaussian curvature for surfaces. way to 

construct manifolds, a topological manifolds 
C analytic manifolds, stating with 

topological manifolds, which are Hausdorff 

second countable is locally Euclidean space 

We introduce the concept of maximal C

atlas, which makes a topological manifold 

into a smooth manifold, a topological 

manifold is a Hausdorff, second countable is 

local Euclidean of dimension n . If every 

point p in M has a neighborhoodU such 

that there is a homeomorphism from U

onto a open subset of nR . We call the pair a 

coordinate map or coordinate system on U . 

We said chart ),( U is centered at Up , 

0)( p , and we define the smooth maps 

NMf : where NM , are differential 

manifolds we will say that f is smooth if 

there are atlases ),(  hU on M and 

),(  gV on N . 

 

NOTIONS ON DIFFERENTIAL 

GEOMETRY 

2.1 Basic analytic geometry  

Definition 2.1.1 

A topological manifold M of 

dimension n , is a topological space with the 

following properties:  
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(i) M is a Hausdorff space . For ever pair of 

points Mgp , , there are disjoint open 

subsets MVU , such that Up and Vg .  

(ii) M is second countable . There exists 

accountable basis for the topology of M .  

(iii) M is locally Euclidean of dimension n  . 

Every point of M has a neighborhood that 

ishomeomorphic to an open subset of nR . 

Definition 2.1.2 

  A coordinate chart or just a chart on 

a topological n manifold M  is a pair ),( U , 

Where U is an open subset of M and 

UU
~

:   is a homeomorphism from U to an 

open subset nRUU  )(
~

 .  

Examples 2.1.3 

Let nS denote the (unit) n sphere, 

which is the set of unit vectors in 1nR : 
}1:{ 1   xRxS nn  with the subspace 

topology, nS is a topological n manifold.  

Definition 2.1.4 

The n dimensional real (complex) 

projective space, denoted by ))()( CPorRP nn
, 

is defined as the set of 1-dimensional linear 

subspace of )11  nn CorR , )()( CPorRP nn
is a 

topological manifold.  

Definition 2.1.5 

  For any positive integer n , the n

torus is the product space )...( 11 SST n  .It 

is an n dimensional topological manifold. 

(The 2-torus is usually called simply the 

torus).  

Definition2.1.6 

The boundary of a line segment is 

the two end points; the boundary of a disc is 

a circle. In general the boundary of an n

manifold is a manifold of dimension )1( n , 

we denote the boundary of a manifold M as

M . The boundary of boundary is always 

empty, M . 

Lemma 2.1.7 

(i) Every topological manifold has a 

countable basis of Compact coordinate 

balls.  

(ii) Every topological manifold is locally 

compact.  

Definitions 2.1.8 

Let M be a topological space n -

manifold. If ),(),,(  VU are two charts such 

that VU , the composite map   

(1) 
)()(:1 VUVU   

 

Is called the transition map from  to .  

Definition 2.1.9 

A smooth structure on a topological 

manifold M is maximal smooth atlas. 

(Smooth structures are also called 

differentiable structure or C structure by 

some authors).  

Definition 2.1.10 

A smooth manifold is a pair ,(M A), 

where M is a topological manifold and A is 

smooth structure on M . When the smooth 

structure is understood, we omit mention of 

it and just say M is a smooth manifold.  

Definition 2.1.11 

Let M be a topological manifold.  

(i) Every smooth atlases for M is contained 

in a unique maximal smooth atlas. 

(ii) Two smooth atlases for M determine the 

same maximal smooth atlas if and only if 

their union is smooth atlas. 

Definition 2.1.12 

Let M be a smooth manifold and let

p be a point of M . A linear map 

RMCX  )(: is called a derivation at p if it 

satisfies: 

(2)     XfpgXgpffgX )()()(   

Forall )(, MCgf  . The set of all derivation 

of )(MC at p is vector space called the 

tangent space to M at p , and is denoted by [

MTp
]. An element of MTp

is called a tangent 

vector at p .  

Lemma 2.1.13 

Let M be a smooth manifold, and 

suppose Mp and MTX p If f  is a cons and 

function, then 0Xf . If 0)()(  pgpf , then

0)( fpX .  

Definition2.1.14 

  If   is a smooth curve (a continuous 

map MJ : , where RJ  is an interval) in a 

smooth manifold M , we define the tangent 

vector to  at Jt  to be the vector 

MT
dt

d
t tt )(|)(

  










, where  

tdt
d | is the 
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standard coordinate basis for RT
t

. Other 

common notations for the tangent vector to

  are 






  )(,)(  t
dt

d
t


 and









 tt

dt

d
|

 . This tangent 

vector acts on functions by: 

(3)    )(
)(

||)( 





t

dt

fd
f

dt

d
f

dt

d
ft tt


 











. 

Definition 2.1.15 

 Let V and W be smooth vector fields 

on a smooth manifold M . Given a smooth 

function RMf : , we can apply V to f and 

obtain another smooth functionVf , and we 

can apply W to this function, and obtain yet 

another smooth function   )(VfWfVW  . The 

operation fVWf  , however, does not in 

general satisfy the product rule and thus 

cannot be a vector field, as the following for 

example shows let 














x
V and 

















y
W on

nR , and let yyxgxyxf  ),(,),( . Then direct 

computation shows that 1)( gfWV , while

  0 fWVggWVf , so WV is not a 

derivation of )( 2RC . We can also apply the 

same two vector fields in the opposite order, 

obtaining a (usually different) function fVW

. Applying both of this operators to f and 

subtraction, we obtain an operator

)()(:],[ MCMCWV   , called the Lie bracket 

of V and W , defined by

    fWVfWVfWV ],[ . This operation is 

a vector field. The Smooth of vector Field is 

Lie bracket of any pair of smooth vector 

fields is a smooth vector field.  

Lemma 2.1.16 

The Lie bracket satisfies the following 

identities for all XWV ,, )(M . Linearity:  

Rba  , ,








].,[],[],[

],[],[],[

WXbVXabWaVX

XWbXVaXbWaV
 

(i) Ant symmetry ],[],[ VWWV  .  

(ii) Jacobi identity 

0]],[,[]],[,[]],[,[  WVXVXWXWV  

For )(, MCgf  VfWgWgVfWVgfWgVf )()(],[],[   

2.3 Convector Fields 

 Let V  be a finite – dimensional vector 

space over R and let *V  denote its dual 

space. Then *V  is the space whose elements 

are linear functions from V  to R, we shall 

call them Convectors. If *V  then RV :  

for the any Vv  , we denote the value of   

on v  by  v  or by ,v . Addition and 

multiplication by scalar in *V  are defined by 

the equations: 
               vvvvv     ,  2121

Where Vv V ,,  and R . 

Proposition2.3.1 

Let V  be a finite- dimensional vector space. 

If ),...,( 1 nEE is any basis for V , then the 

convectors ),...,( 1 n defined by. 

(5)  









jiif

jiif
E i

jj

i

0

1
)(  , 

Form a basis for V , called the dual basis to

)(
j

E .Therefore, VV dimdim  . 

Definition 2.3.2 

rAC Convector field   on M , 0r , 

is a function which assigns to each M  a 

convector  MTPp

  in such a manner that 

for any coordinate neighborhood ,U with 

coordinate frames
nEE ,..,1
, the functions 

  ,,.....,1  , niEi   are of class rC on U . For 

convenience, "Convector field” will mean 

C convector field. 

2.4 The Exponential Map Normal 

Coordinates  

We have already seen that there are 

many differences between the classical 

Euclidean geometry and the general 

Riemannian geometry in the large. In 

particular we have seen examples in which 

one of basic axioms of Euclidean geometry 

no longer holds. Two distinct geodesic (real 

lines) may intersect in more than one point. 

The global topology of the manifold is 

responsible for this “failure”. In this we will 

define using the metric some special 

collections to being Euclidean. Let  gM ,  

be Riemannian manifold andU , an open 

coordinate neighborhood with coordinate

 nxx ,...,1 .We will try to find a local change 

in coordinate  ii yx   in which the 

expression of the metric is as close are to 

the Euclidean metric ji dydyjig ,0  . Let

uq , be the point with coordinate  0,...,0

via a linear we may as well assume that 
jiqg ji ,)(  . We would like “spread” the 
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above equality to an entire neighborhood of

q . To achieve this we try to find local 

coordinates Jy  near q  such that in these 

new coordinates the metric is Euclidean up 

to order one i,e . 

(6)  





























gkjiq
yy

q
y

g
qg

k

ji

k

Ji

k

ji

ji

,,:,0)(

)()(

,,

,

 

We now describe a geometric way of 

producing such coordinates using the 

geodesic flow .Denote as usual the geodesic 

from q  with initial direction )(MTX q . By 

)(tX q  Not the following simple fact L

VX . Hence, there exists a small 

neighborhood V of )(MTq , Such that, for 

any VX , the geodesic )(tX
q

 is defined for 

all 1t  .we define the exponential map at

q .
 

)1(,)(:exp qqq XXMMTV   

The tangent space )(MT
q

 is a 

Euclidean space, and we can define
)()( MTrD qq  , the open “disk” of radius r 

centered at the origin we have the following 

result centered at the origin .we have the 

following result 

In particular,   i

a

i hXdx  , that is, idx

measures the change in theis coordinate of a 

point as it moves from the initial to the 

terminal point of 
a

X . The preceding formula 

may thus be written. 

(7)     ....)(1

1 a

n

a

na

a

a Xdx
x

f
Xdx

x

f
Xdf 

























  

This gives us a very good definition 

of the differential a function on ;nRU   is a 

field of linear functions which at any point a 

of the domain of f assigns to each vector 
a

X  

a number. Interpreting 
aX as the 

displacement of the n independent variables 

from a , that is, a  as initial point and ha   as 

terminal point.  aXfd a approximates 

(linearly) the change in f between these 

points.  

Definition 2.4.2 

A convector tensor on a vector space 

V  is simply a real valued  rI vv ,....,  of 

several vector variables 
rI

vv ,...., ofV , linear 

in each separately.(i.e. multiline). The 

number of variables is called the order of 

the tensor. A tensor field   of order r on a 

manifold M  is an assignment to each point 

MP of a tensor 
P  on the vector space

 MT
P

, which satisfies a suitable regularity 

condition orCCC r ,,0  as P  varies on M .  

Theorem 2.4.3 

With the natural definitions of 

addition and multiplication by elements of 

R  the set r

sV )(  of all tensors of order ),( sr on 

V  forms a vector space of dimension srn  . 

Theorem 2.4.4 

The maps A and S are defined on 

 r
M  a 

C manifold and  r
M  the 

C

covariant tensor fields of order r  , and they 

satisfy properties there. In these cases of (c), 

:*F  Nr  Mr  is the linear map induced by 

a C mapping NMF : . 

Definition 2.4.5 

Let V  be a vector space and V  

are tensors. The product of  and  , denoted

  is a tensor of order sr   defined by : 
),....,(),....,(),....,...,...( 1111 srrrsrrr vvvvvvvv    . 

The right hand side is the product of 

the values of   and  .The product defines a 

mapping    , of x  Vr
  Vsr . 

Theorem 2.4.6 

The product  Vr o  Vr   Vsr  just 

defined is bilinear and associative. If 

 n ,....,1 is a basis of. 

Definition 2.4.7 

Carton’s wedge product, also known 

as the exterior Product, as the ant symmetric 

tensor product of cotangent space basis 

elements )(2/1 dxdydydxdydx  dxdy  . 

Note that, by definition, 0 dxdx . The 

differential line elements dx  and dy are 

called differential 1-forms or 1-form; thus 

the wedge product is a rule for construction 

g 2-forms out of pairs of 1-forms. 

Remark 2.4.8 

Let p  be an element of p p , p  an 

element of q . Then    
pq

pq

qp   )1( . 

Hence odd forms ant commute and the 
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wedge product of identical 1-forms will 

always vanish.  

Definition 2.4.9 

A topological space M is called 

(Hausdorff) if for all Myx , there exist 

open sets such that Ux and Vy and 

VU  

Definition 2.4.10 

A topological space M is second 

countable if there exists a countable basis 

for the topology on M . 

Definition 2.4.11 

A topological space M is locally 

Euclidean of dimension n if for every point 

Mx there exists on open set MU and 

open set nRw so that U and W is 

(homeomorphism). 

Definition 2.4.12 

A topological manifold of dimension 

n is a topological space that is Hausdorff, 

second countable and locally Euclidean of 

dimension N. 

Definition 2.4.13 

A smooth atlas A of a topological 

space M is given by: 

(i) An open covering  
Ii

U


where MUi   

Open and  iIi UM   
(ii) A family  

Iiiii WU


: of 

homeomorphism i
 onto opens subsets 

n

i RW  so that if  ji UU then the map 

   
jijjii UUUU   is  

(Adiffoemorphism) 

Example 2.4.14 

The stereographic is map  on 
 NS 2: onto 2R the noth pole )1,0,0(

  )(,2 pNSp  is defined to be the 

point at which line N and p intersects the 

xy-plan   RNS 2: is 

“diffeomorphism” to do so write explicitly 

in coordinates and solute for 1  
 

 

 

 

 

 

 
 

Fig. (1): the diffeomorphism 

Definition 2.4.15 

A smooth structure on a Hausdorff 

topological space is an equivalence class of 

atlases, with two atlases A and B being 

equivalent if for   AU ii , and   BV jj ,

with  ji VU then the transition map

   
jijjii VUVU   is a 

diffeomorphism (as a map between open 

sets of nR ). 

Definition 2.4.16 

A smooth manifold M of dimension 

n is a topological manifold of dimension n 

together with a smooth structure. 

Definition 2.4.18 

A map NMF : is called a 

diffeomorphism if it is smooth objective and 

inverse MNF  :1 is also smooth. 

Definition 2.4.19 

A map F is called an embedding if F is an 

immersion and homeomorphism onto its 

image  

Definition 2.4.20 

If NMF : is an embedding then 

)(MF is an immersed sub manifoldsof N . 

Example 2.1.21 

The vector function as vector fields 

on ER  , the function  tfi is vector fields 

Rtautr  , is parameterizations iuu 

on line iaa  is vector as point on line L . 

),,()( 332211 atuatuatutrr   
 

 

 

 

 

 

 

 

 
Fig.(2) : vector fields 

2.5: Tangent space and vector fields  

Let ),( NMC be smooth maps from 

M and N and let )(MC smooth functions 

on M is given a point Mp denote, 

)( pC is functions defined on some open 

neighborhood of p and smooth at p . 

Definition 2.5.1 
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(i) The tangent vector X to the curve 

  Mc   ,: at 0t is the map 

RcCc  ))0((:)0( given by the formula. 

(8)  
















 



)0(
)(

)()0()(
0

cCf
dt

cfd
fcfX

t

  

(ii) A tangent vector X at Mp is the 

tangent vector at 0t of some curve 

  M  ,: with p)0( this is

RpCX   )(:)0( . 

Remark 2.5.2 

A tangent vector at p is known as a 

liner function defined on )( pC which 

satisfies the (Leibniz property) 

(9)  








 )(,

)()()(

pCgf

gXfgfXgfX
 

Differential 2.5.3 

Given ),( NMCF  and Mp and

MTX p choose a curve M ),(:  with 

p)0( and X )0( this is 

possible due to the theorem about existence 

of solutions of liner first order ODEs , then 

consider the map 
NTMTF pFpp )(* :  mapping

)0()()( /

* FXFX p  , this is liner map 

between two vector spaces and it is 

independent of the choice of  . 

Definition 2.5.5 

The liner map pF* defined above is 

called the derivative or differential of F at 

p while the image )(* XF p is called the push 

forward X at Mp Definition 2.5.6 

Given a smooth manifold M a vector field 

V is a map TMMV : mapping 

pVpVp  )( and V is called smooth if it 

is smooth as a map from M to TM . 

)(MX Isan R vector space for

)(, MXZY  , Mp and 

ppp bZaVbZaYRba  )(,, and for 

)(,)( MXYMCf   define TMMYf :

mapping. 

(10)   
pp YpfYfp )()(   

2.6: Cotangent smooth n-manifolds  

Let M be a smooth n-manifolds and 
Mp .We define cotangent space at p

denoted by MTp

*

to be the dual space of the 

tangent space at  RMTfMTp pp  :)(: *

, 

f smooth Element of MTp

*

are called 

cotangent vectors or tangent convectors at 
p . 

(i) For RMf : smooth the composition 

RRTMT pfp  )(

*

is called 
 

p
df

and 

referred to the differential of f .Not that 
MTdf pp

* so it is a cotangent vector at p . 

(ii) For a chart  ixU ,, of M and Up

then  n

i

idx
1 is a basis of MTp

*

in fact  idx  

is the dual basis of
n

i

idx

d

1







. 

Definition 2.6.1 

The elements in the tensor product 
 ** ....... VVVVV r

s  are called 

tensors or r-contra variant, s- contra 

varianttensor. 

Remark 2.6.2 

The Tensor product is bilinear and 

associative however it is in general not 

commutative that is    1221 TTTT  in 

general. 

Definition 2.6.3 
r

sVT  is called reducible if it can be 

written in the form 
s

r LLVVT  ...... 1

1 for. 
*, VLVV j

ri  for sjri  1,1 . 

Definition 2.6.4 

Choose two indices  ji,  where 
sjri  1,1 for any reducible tensor 

   21

1 ....... LLVVT r  let   1

1



 r

s

r

i VTC

We extend this linearly to get a linear map 
 1

1: 

 r

s

r

s

j

i VVC which is called tensor-

contraction. 

Definition 2.6.5 

Let NMF : be a smooth map 

between two smooth manifolds and 
 NTw k

0 be a k covariant tensor field we 

define a k covariant tensor field wF * over 

M by. 

(11)  
          



















MTvv

vFvFwvvwF

pk

kpppFkp

,...,

,...,,...,

1

*1*1

*

 

In this case wF * is called the pullback of 

w by F . 

Example 2.6.7 

The tangent bundle section is 

function mn RRf : is differential or 
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tangent map as point p on tangent felids 
)( pdf is image pdf . 

CpfCpCfCvvdf pfp  )(,)(,)( )(  
 

 

 

 

 

 

 

 
 

Fig (4): differential tangent map 

 

2.7: Integration of differential forms  

M w is well defined only if M is 

orient able nM )dim(  and has a partition 

of unity and w has compact support and is a 

differential n-form on M . 

Example 2.7.1 

The circular helix on curve is parameters on 

 

 

 

 

 

 

 

 

 

Definition 2.7.2 

A pair  gM , of a manifold M equipped 

with a Riemannian metric g is called a 

Riemannian manifold. 

Definition 2.7.3 

Suppose  gM , is a Riemannian manifold 

and Mp we define the length ( or norm ) 

of a tangent vector MTv p to be 

p
vvv , Recall    ,,g and the 

angle wv, between  wvMTwv p  0, by  

(12)  















wv

wv
wv

p
,

),(cos . 

Examples 2.7.4 

(i).Euclidean metric (canonical metric) 

Eucl
g on nR . 

(13)
















nn

nnji

jiEucl

dxdxdxdx

dxdxdxdxdxdxg

...

...

11

11
 

(ii) Induced metric 

Let  gM , be a Riemannian manifold and 

 gMNf ,:  an immersion where N is a 

smooth manifold ( that is f is a smooth 

map and f is injective ) then induced metric 

on N is defined . 

(14)  
        











NpNTwv

wfvfgwvgf

p

pfp

,,:

)(,)(, **)(
 

The induced metric nS sometimes 

denoted  
nSEuclg from the Euclidean space 

1nR and Euclg by the inclusion 12:  nRSi

is called the standard (or round) metric on 
nS clearly i is an immersion .Consider 

stereographic projection 32 RS  and 

denote the inverse map 22: SRu  then

Eucl
gu* . Given the Riemannian metric for

2R . 

(iii) Product metricIf  
11, gM ,  22 , gM are 

two Riemannian manifolds then the product 

21 MM  admits a Riemannian metric 

21 ggg  is called the product metric 

defined by . 

(15)
),(),(),( 2221112121 vugvugvvuug 

 

),(),(),( 2221112121 vugvugvvuug  . 

Where iipii MTvu , for ,....2,1i we use the 

fact that 2121, 1121

)( MTMTMMT pppp  . 

(iv)Warped product Suppose  
11, gM ,

 22 , gM are two Riemannian manifolds 

then  
2

2

121 , gfgMM  is the warped 

product of 21
, gg or denoted  

11, gM
f



 22 , gM where RMf 1: a smooth 

positive function is. 

(16) 
   

     















2221111

21222

2

1

,,

,

11

21

wvgpfvug

vvuugfg

pp

pp
 

Definition 2.7.6 

A smooth map    hNgMf ,,: 

between two Riemannian manifolds is 

called a conformal map with conformal 

factor   RM: if   ghf 2* 
.A 

conformal map preserves angles that is 

   )(,)(, ** wfvfwv  for all MTvu p, and 

Mp . 

Example 2.7.7 
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32 RS  We consider stereographic 

projection 22 / RpS
n
 . As stereographic 

projection is a diffeomorphism its inverse 

n
pSRu /:  is a conformal map. It follows 

from an exercise sheet that u is a conformal 

map with conformal factor

 221/2),( yxyx  . 

Definition 2.7.8 

A Riemannian manifold  gM , is 

locally flat if for every point Mp there 

exist a conformal diffeomorphism 

VUf : between an open neighborhood

U of p and nRV  of )( pf . 

Definition 2.7.9 

Given two Riemannian manifold 
 gM , and  hN , they are called isometric 

of there is a diffeomorphism NMf :

such that ghf * such that a differ-

morphism f is called an isometric. 

Remark 2.7.10 

In particular an isometrics 

),(),(: gMgMf  is called an isometric of

),( gM . All isometrics on a Riemannian 

manifold from a group. 

Definition 2.7.11 

),(,),( hNgM Are called locally 

isometric if for every point Mp there is 

an isometric VUf : from an open 

neighborhoodU of p in M and an open 

neighborhoodV of )( pf in N . 

Definition 2.7.12 

Suppose ),(),(: hNgMf  is an 

immersion then f is isometric if ghf * . 

Definition 2.7.13 

A bundle metric h on the vector 

bundle ),,( ME is an element of 

 ** EE  which is symmetric and positive 

definite. 

2.8: Differentiable injective manifold 

 The basically an m-dimensional 

topological manifold is a topological space 
M  which is locally homeomorphism to mR

definition is a topological space M  is called 

an m-dimensional (topological manifold) if 

the following conditions hold.  

(i) M is a hausdorff space.  

(ii) For any Mp there exists a 

neighborhood U of P which is 

homeomorphism to an open subset mRV  .  

(iii) M has a countable basis of open sets, 

coordinate charts ),( U  

(iv) is equivalent to saying that Mp has a 

open neighborhood PU homeomorphism 

to open disc mD in mR , axiom (v) says that 

M can covered by countable many of such 

neighborhoods , the coordinate chart ),( U

where U are coordinate neighborhoods or 

charts and  are coordinate . 

A homeomorphisms , transitions 

between different choices of coordinates are 

called transitions maps ijji   , which 

are again homeomorphisms by definition , 

we usually write nRVUxp   :,)(1 

as coordinates forU and 

MUVxp   :,)( 11  as coordinates 

for U , the coordinate charts ),( U are 

coordinate neighborhoods, or charts , and 

are coordinate homeomorphisms, transitions 

between different choices of coordinates are 

called transitions maps ijji   which 

are again homeomorphisms by definition , 

we usually nRVUpx  :,)(  as a 

parameterization U . A collection 

 
Iiii UA


 ,( of coordinate chart with 

iiUM   is called atlas for M . The 

transition maps ji  a topological space M is 

called (hausdorff ) if for any pair Mqp , , 

there exist open neighborhoods Up and 

Uq  such that UU for a topological 

space M with topology U can be written 

as union of sets in  , a basis is called a 

countable basis  is a countable set . 

Definition 2.8.1 

Let X be a set a topology U for X is 

collection of X satisfying. 

(i)  And X are in U  
(ii) The intersection of two members of U is 

in U . 

(iii) The union of any number of members 

U is inU . The set X  with U is called a 

topological space the members uU  are 

called the open sets. let X be a topological 
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space a subset XN  with Nx is called a 

neighborhood of x if there is an open set 

U with NUx  , for example if X a 

metric space then the closed ball )(xD and 

the open ball )(xD are neighborhoods of 

x a subset C is said to closed if CX \ is 

open  

Definition 2.8.2 

A function YXf : between two 

topological spaces is said to be continuous if 

for every open set U of Y the pre-image 

)(1 Uf  is open in X . 

Definition 2.8.3 

Let X and Y be topological spaces 

we say that X and Y are homeomorphism 

if there exist continuous function such that 

yidgf  and Xidfg  we write YX 

and say that f and g are homeomorphisms 

between X and Y , by the definition a 

function YXf : is a homeomorphisms if 

and only if . 

(i) f is a objective. 

(ii) f is continuous  

(iii) 1f is also continuous.  

Definition 2.8.4 

A differentiable manifold of 

dimension N is a set M and a family of 

injective mapping MRx n  of open sets 
nRu  into M such that. 

(i) Muxu )(   
(ii)For any  , with )()(  uxux 

 
(iii)the family ),(  xu is maximal relative to 

conditions the pair ),(  xu or the mapping

x with )(  uxp is called a 

parameterization , or system of coordinates 

of M , Muxu )(  the coordinate charts 

),( U where U are coordinate 

neighborhoods or charts, and  are 

coordinate homeomorphisms transitions are 

between different choices of coordinates are 

called transitions maps. 
 1

, : 

ijji    

Which are anise homeomorphisms 

by definition, we usually write
nRVUpx  :,)(  collectionU and 

MUVxp   :,)( 11  for coordinate 

charts with is 
iUM  called an atlas for 

M of topological manifolds. A topological 

manifold M for which the transition maps

)(, ijji   for all pairs ji  , in the atlas 

are homeomorphisms is called a 

differentiable, or smooth manifold, the 

transition maps are mapping between open 

subset of mR , homeomorphisms between 

open subsets of mR are C maps whose 

inverses are also C maps , for two charts
iU

and jU the transitions mapping. 

)()(:)(
1

, jijjiiijji UUUU 


   

And as such are homeomorphisms between 

these open of mR , for example the 

differentiability )( 1   is achieved the 

mapping ))~(( 1   and )~( 1  which are 

homeomorphisms since )( AA   by 

assumption this establishes the equivalence 
)( AA  , for example let N and M be 

smooth manifolds n and m

respecpectively, and let MNf : be 

smooth mapping in local coordinates 
  )()(:1 VUff    ,with respects 

charts ),( U and ),( V , the rank of f at 

Np is defined as the rank of f  at )( p

i.e. )()()( pp fJrkfrk 
 is the  

Definition 2.8.5 

Let nI be the identity map on nR , 

then  n
n IR , is an atlas for nR indeed, if 

U is any nonempty open subset of nR , then 

 nIU , is an atlas for U so every open 

subset of nR is naturally a C manifold. 

Example 2.8.6 

The n-space is a manifold of 

dimension n when equipped with the atlas 

 11,),(,),(1  niVUA iiii  where for 

each 11  ni . 

(17) 
 















)...,,,,...,(

),.....,(0,)....,,(

1111

11111

nii

ni

n

ni

xxxx

xxxSxxU 
 

 

OERATOR GEOMETRIC ON 

RIEMANNIAN MANIFOLDS 

3.1 Vector Analysis one Method Lengths] 

Classical vector analysis describes 

one method of measuring lengths of smooth 
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paths in 3R if   31,0: Rv  is such a paths, 

then its length is given by length dttvv )( . 

Where  v  is the Euclidean length of the 

tangent vector )(t , we want to do the same 

thing on an abstract manifold, and we are 

clearly faced with one problem, how do we 

make sense of the length )(tv obviously , this 

problem can be solved if we assume that 

there is a procedure of measuring lengths of 

tangent vectors at any point on our manifold 

The simplest way to do achieve this is to 

assume that each tangent space is endowed 

with an inner product. (Which can vary 

point in a smooth). 

Definition 3.1.1 

A Riemannian manifold is a pair ).( gM  

consisting of a smooth manifold M  and a 

metric g on the tangent bundle, i.e a smooth 

symmetric positive definite tensor field on
M . The tensor g is called a Riemannian 

metric on M . Two Riemannian manifold 

are said to be isometric if there exists a 

diffeomorphism 21: MM   such that

21: gg  If ).( gM  is a Riemannian 

manifold then, for any Mx the restriction 

RMTMTg xxx  )()(: 21 . Is an inner 

product on the tangent space )(MT
x we will 

frequently use the alternative notation

),(),(  xx g the length of a tangent vector

)(MTv x  is defined as usual

  2/1
,vvgv xx

 . If   Mbav ,:  is a piecewise 

smooth path, then we defined is length by


b

a

dttvvL )()( . If we choose local 

coordinates ),....,( 1 nxx  on M , then we get a 

local description of g  as. 

(18)   





































ji

ji

ji

ji
xx

ggdxdxgg ,,,  

Proposition 3.1.2  

  Let be a smooth manifold, and 

denote by MR  the set of Riemannian metrics 

on M then MR is a non –empty convex cone 

in the linear of symmetric tensor  

Example 3.1.3 

Let  gM ,  be Riemann manifold and

MS   a sub manifold if MS   , denotes 

the natural inclusion then we obtain by pull 

back a metric on  SggigS S /,   . For 

example, any invertible symmetric  nn

matrix defines a quadratic hyper surface in
nR  by  1),(,  xARxH x

n

A where  ,  

denotes the Euclidean inner on nR , AH has 

a natural. 

Example 3.1.4 

The Poincare model of the hyperbolic plane 

is the Riemannian manifold  gD,  where 

D  is the unit open disk in the plan nR  and 

the metric g is given by. 

(18)   22

221

1
dydx

yx
g 










  

Example 3.1.6  

Consider a lie group G , and denote by GL  

its lie algebra then any inner product ,  

on GL  induces a Riemannian metric

g
h  ,  on G defined by. 

(19)  









 

)(,:

)(,,),( 11

GTyXGg

YLXLyxyxh

g

gggg

 

Where )()(:)( 1

1 GTGTL gg 

  is the 

differential at Gg of the left translation 

map 1

gL . One checks easily that check easily 

that the correspondence  ,gG  is a 

smooth tensor field, and it is left invariant 

(i,e) GghhLg  . If G  is also 

compact, we can use the averaging 

technician to produce metrics which are 

both left and right invariant. 

3.2 The Levi-Cavite Connection  

To continue our study of 

Riemannian manifolds we will try to follow 

a close parallel with classical Euclidean 

geometry the first question one may ask is 

whether there is a notion of “straight line” 

on a Riemannian manifold. In the Euclidean 

space R3 there are at least ways to define a 

line segment a line segment is the shortest 

path connecting two given points a line 

segment is a smooth path   31,0: Rv 

satisfying 0)( tv . Since we have not said 

anything about calculus of variations which 

deals precisely with problems of type. 

(i) We will use the second interpretation as 

our starting point, we will soon see however 

that both points of view yield the same 

conclusion. 
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(ii) Let us first reformulate as know the 

tangent bundle of 3R is equipped with a 

natural trivialization, and as such it has a 

natural trivial connection 0  defined by.

  jiji ,:00  Where, 

(19)    

















 ii

i

jj
x

ji ,,,00  

All the Christ off symbols vanish, moreover, 

if g0 denotes the Euclidean metric, then. 

(20)       

















0)(

0,,,

0

)(

0

0

0

0

0

0

0

tV

ggg

tV

kjkjikjikji  

So that the problem of defining 

“lines” in a Riemannian manifold reduces to 

choosing a “natural” connection on the 

tangent bundle of course, we would like this 

connection to be compatible with the metric 

but even so, there infinitely many 

connections to choose from. The following 

fundamental result will solve this dilemma. 

Proposition 3.2.1 

Let  gM ,  be a Riemannian manifold for 

any compact subset TM  there exists

0 such that for any   kXx , there 

exists a unique geodesic   MXVV X   ,:

such that XVxV  )0(,)0(  

One can think of a geodesic as 

defining a path in the tangent bundle 

 )(),( tVtVt  . The above proposition 

shows that the geodesics define a local flow

  on )(MT  by  

(21)      XVtVtVXx X

t ,)(),(.   

Definition 3.2.2 

The local flow defined above is called the 

geodesic flow the Riemannian manifold

 gM ,  when the geodesic low is global 

flow i,e any XVX is defined at each moment 

of t for any   )(, MTXx  , then the 

Riemannian manifold is call geodetically 

complete . 

Definition 3.2.3 

Let L  be finite dimensional real lie algebra, 

the killing paring or form is the bilinear 

map. 

(22)  
 





















LYX

YadXadtrYXKRLLK

,:

))(.)((,,:
 

The lie algebra L  is said to be semi simple 

if killing paring is a duality, a lie group G  is 

called semi simple if its lie algebra is semi 

simple. 

Proposition 3.2.4  

Let  gM ,  and Mq  as above .Then there 

exists 0r  such that the exponential map.(

MrD
qq

)(:exp Is a diffeomorphism on 

to. The supermom of all radii r with this 

property is denoted )(qPM . 

Definition 3.2.5 

The positive real number )(qP
M  is called 

the infectivity radius of M  at q  the infemur. 

 )(inf qPP MqM   

Is called the infectivity radius of M  

 

Lemma 3.2.6 

The Freshet differential at )(0 MTq  of the 

exponential map, )()0(exp)(:exp0 MTMTMTD qqqq  . 

Is the identity )()( MTMT qq   
Theorem 3.2.7 

Let rq,  and   as in the previous and 

consider the unique geodesic   Mr 1,0:  of 

length  , joining two points )(qB
r .if

  Mw 1,0:  is a piecewise smooth path 

with the same endpoint as then. 

(23)  dttwdtt  
1

0

1

0

)()(  

With equality if and only if

   1,0()1,0( w Thus ɤ is the shortest path, 

joining its endpoints. 

3.4: Riemannian Geometry  

Definition 3.4.1 Riemannian Metrics  

Differential forms and the exterior 

derivative provide one piece of analysis on 

manifolds which, as we have seen, links in 

with global topological questions. There is 

much more on can do when on introduces a 

Riemannian metric. Since the whole subject 

of Riemannian geometry is a huge to the use 

of differential forms. The study of harmonic 

from and of geodesics in particular, we 

ignore completely hare questions related to 

curvature. 

Definition 3.4.2 Metric Tensor  

In informal terms a Riemannian 

metric on a manifold M is a smooth 

varying positive definite inner product on 

tangent space x
T . To make global sense of 

this note that an inner product is a bilinear 
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form so at each point x  , we want a vector 

in tensor product. **

xx
TT   We can put, just as 

we did for exterior forms a vector bundle 

striation on. ****

x
xMx

TTMTMT 


 . The 

conditions we need to satisfy for a vector 

bundle are provided two facts we used for 

the bundle of p-forms each coordinate 

system  nxx ,,.........1
 defiance a basis 

ndxdx ..,,.........1
 for each *

xT in the coordinate 

neighborhood and the 2n element.

njidxdx ji  ,1 . Given a corresponding 

basis for **

xx TT  . The Jacobean of a change 

of coordinates defines an invertible linear 

transformation. **: xx TTJ  And we have a 

corresponding. 

(24)   **

xx TTJJ  **

xx TT 

 Definition 3.4.3 Local Coordinate 

System A Riemannian metric on manifold

M  is a section g of **

xx
TT  which at each 

point is symmetric and positive definite. In a 

local coordinate system we can write. 

(25)    
ji

ji
ij dxdxxgg 

,
 

Where    xgxg ijji ,,   and is a smooth 

function, with  xg ji ,
 positive definite. Often 

the tensor product symbol is omitted and 

one simply writes.  
ji

ji
ij dxdxxgg 

,

 

Definition 3.4.4  

A diffehomorphism NMF : , between two 

Riemannian manifolds is an isometric if 

NN ggF *  

Definition 3.4.5 

Let M a Riemannian manifold and 

  M1,0:  a smooth map i,e a smooth 

curve in M . The length of curve is 

dtgL 
1

0

),()(  . Where












dt

d
Dt

t
 )(

, 

with this definition, any Riemannian 

manifold is metric space define. 

(26)   ytRLyxd  )(:)(inf),(   

are Riemannian an manifold space. 

Proposition 3.4.6 

Consider any manifold M and its cotangent 

bundle )(* MT , with projection to the base 

MMTp )(: * , let X  be tangent vector to 

)(* MT at the point MT
a

*
 then 

)()( * MTXDp   so that ))(()( xDX pa   

defines a conical a conical 1-form  on 

)(* MT in coordinates 
i

i dyyyx ),( the 

projection p  is xyxp ),(  so if




































 

i

i

i

i
y

b
x

aX  so if given take 

the exterior derivative ii dydxdw    

which is the canonical 2-from on the 

cotangent bundle it is non-degenerate, so 

that the map )( wiX  from the tangent 

bundle of )(* MT to its contingent bundle is 

isomorphism. Now suppose f is smooth 

function and )(* MT its derivative is a 1-

form do. Because of the isomorphism a 

above there is a unique vector field X  on 

)(* MT such that )( widf   from the g 

another function with vector field Y , 

Definition 3.4.7 

The vector field X  on )(* MT given by 

dHwI i  is called the geodesist flow of the 

metric g . 

Definition 3.4.11 

If    MTba *,:  Is an integral curve of the 

geodesic flow. Then the curve  P  in )(M

is called ageodesic. In locally coordinates, if 

the geodesic flow. 

(27)  





































j

j

i

i
y

b
x

aX  

MTp at every point p of M , then MTp is 

isomorphic to nRM m here isomorphic 

means that TM and nRM  are 

homeomorphism as smooth manifolds and 

for every Mp , the homeomorphism 

restricts to between the tangent space MTp

and vector space   n

i RP  . 

 

GET PEER REVIEWED 

The basic notions on analytic 

geometry knowledge of calculus, including 

the geometric formulation of the notion of 

the differential and the inverse function 

theorem. The differential Geometry of 

surfaces with the basic definition of 

differentiable manifolds, starting with 

properties of covering spaces and of the 



                    International Journal of Research & Review (www.gkpublication.in)  90 

Vol.3; Issue: 2; February 2016 

fundamental group and its relation to 

covering spaces. 
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