
 International Journal of Research & Review (www.gkpublication.in) 355

Vol.2; Issue: 6; June 2015

 International Journal of Research and Review
www.ijrrjournal.com E-ISSN: 2349-9788; P-ISSN: 2454-2237

Original Research Article

Performance Evaluation of Fault-Tolerant Routing

For Network-On-Chip in Hotspot and Local Traffic

Ladan Momeni
1
, Arshin Rezazadeh

2

1,2Faculty Member,
1Sama Technical and Vocational Training College, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran

2Department of Computer Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Corresponding Author: Ladan Momeni

Received: 06/06/2015 Revised: 09/06/2015 Accepted: 24/06/2015

ABSTRACT

NoC is a scalable and flexible communication medium for the design of multi-core based SoC.

Communication performance of NoC depends seriously on efficient routing algorithms. Fault-tolerant
routing algorithm is the ability to survive failure of individual components. We evaluated a deterministic

fault-tolerant, deadlock-free routing algorithm in two-dimensional (2D) mesh based topology on Fault-

Tolerant-Routing (FTR) to increase performance of the messages over the on-chip interconnection
networks. The FTR algorithm is a wormhole-switched routing for 2-D mesh networks and has been used

for block faults. This algorithm uses virtual channels to pass faulty regions. We have evaluated the FTR

algorithm by two different traffic patterns, hotspot and local, to show message delays and performance in

the network which led to an Improved-Fault-Tolerant-Algorithm (i-FTR). Moreover, to simulate FTR and
i-FTR algorithms, same network conditions namely network size, message length and number of

generated messages has been considered. It can be deduced from results that i-FTR performance is better

compared to FTR algorithm. Furthermore, results show that the interconnection network of NoC which
has been used for i-FTR can deal with higher message rates and can tolerate higher traffic loads with

higher utilization.

Keywords: routing algorithm; wormhole switching; 2D-mesh interconnection networks; virtual channel

I. INTRODUCTION

With the improvements in process

technology, multi-core architecture has

become the norm. A new communication

paradigm, called Network-on-Chip (NoC),

has been widely investigated for future

Systems-on-Chips (SoCs) Fault-tolerance is

an important feature of NoC since it usually

has inherent redundancy in communication

which can be used for hardware

reconfiguration.
[1]

In NoC paradigm, cores are

connected to each other through a network

of routers and they communicate among

themselves through packet-switched

communication. The protocols used in NoC

are generally the simplified versions of

general communication protocols used in

data networks. This makes it possible to

accept mature concepts of communication

networks routing algorithms, switching

 International Journal of Research & Review (www.gkpublication.in) 356

Vol.2; Issue: 6; June 2015

techniques, congestion control etc. in NoC.
[2]

Two kinds of faults (permanent and

transient) need to be addressed in NoC

architectures. There are two methods to cope

with transient and permanent faults in NoC.

Flow-control-based methods combine the

error control code with the retransmission

mechanism to tolerate transient faults

occurring in transmission; the other is fault-

tolerant routing which utilizes the inherent

structure redundancy of NoC to route

packets around the permanent faulty routers

or links to achieve fault-tolerance. A good

fault-tolerant routing algorithm should

ensure zero lost packet in whatever fault

patterns as long as a path exists.
[3]

The most common template that

proposed for the communication of NoC is a

2-D mesh network topology where each

resource is connected with a router. In these

networks, source nodes (an IP-Core),

generate packets that include headers as well

as data, then routers transfer them through

connected links to destination nodes. Every

node has four neighbors; one on North, one

South, one West and one on East of any

node except border nodes.

The two main components of interest

when designing NoCs are the routers,

designed for performance, and secondly, the

underlying topology and its associated

routing algorithm, designed to facilitate data

transfer.
[4]

Wormhole routing is the preferred

flow control strategy for application-specific

topologies, providing the NoC components

with low latency and buffering

requirements. Although there are advantages

to this type of routing, it is also prone to

contention as the packets tend to spread

throughout the network during transmission.

Contention within a network occurs when

different packets require the same resources

at a particular moment in time. If a

contention point propagates throughout the

system, congestion is formed, causing

performance degradation. As a result, the

system can have long delays and may not

meet throughput and utilization

requirements as is necessary to adhere to its

system demands. A bottleneck is thus a

single contention point that limits the overall

system performance,
[5]

In the context of NoCs, a

communication failure can happen due to a

fault on either a router or a link between two

routers.
[1]

Deadlock is a situation in a network

where a number of messages wait for each

other and none of them can proceed. It is a

result from a cyclic dependency between the

packets. Deadlocks can be handled in two

ways: to prevent them from happening

(deadlock avoidance) or cope with the

situation when a deadlock appears (deadlock

recovery). Well known avoidance methods

include turn models and virtual channels.
[6]

We have been modified the way of

usage of virtual channels to improve the

performance of routing algorithm such as

latency and utilization. As simulation results

showed, delay of messages and also delay of

messages in source node decreased by use of

modified algorithm, i-FTR fault-tolerant

algorithm. Moreover, utilization of i-FTR

has higher in comparison with FTR

algorithm.

The organization of the paper is as

follows. Routing algorithms are discussed in

section 2. In section 3 fault-tolerant

algorithms explained. FTR algorithm and

evaluated algorithm of this research are

described in section 4. Section 5 covers the

simulation results and finally section 6

presents the conclusion.

II. ROUTING-ALGORITHM

A routing algorithm which consists

of a routing function and a selection strategy

determines a path that a packet traverses

from source to destination. According to the

 International Journal of Research & Review (www.gkpublication.in) 357

Vol.2; Issue: 6; June 2015

coordinates of current and destination nodes,

the routing function returns a set of available

output ports. Then, the selection strategy

chooses one from the set based on the

parameters which are applied to weight the

output port.
[7]

In NoCs, routing algorithms are used

to determine the path of a packet from the

source to the destination. These algorithms

are classified as deterministic and adaptive.

The implementations of deterministic

routing algorithms are simple but they are

not able to balance the load across the links

in non-uniform or bursty traffic. Adaptive

routing algorithms are proposed to address

these limitations. By better distributing load

across links, adaptive algorithms improve

network performance and also provide

tolerance if link or router failure occurs.
[8]

Deadlock is an anomalous network

state in which a circular hold-and-wait

dependency relation is formed among the

network resources, causing packet routing to

be indefinitely postponed. Meanwhile, in

livelock situation, a packet travels

continuously around the network without

ever reaching its destination because the

requested channels are constantly occupied

by other packets. In any routing scheme, it is

essential to avoid both deadlock and

livelock.
[9]

In XY routing algorithm, the packet

is first routed across X axis and then across

Y axis until it reaches the destination node.

However, applying XY routing for the torus

topology may cause deadlock due to the

channel dependency in each dimension

between different messages as a result of

added wrap-around links (with respect to the

mesh topology). By using more than one

virtual channel, there will be the flexibility

of designing different deadlock-free routing

algorithms for the cost of extra hardware

complexity, more area, and thus higher

power consumption.
[10]

III. FAULT-TOLERANT ROUTING

Fault-tolerant methods require the

use of redundancies which in turn

deteriorate other concerns of NoCs such as

performance and power consumption. In

other words, reliability, performance and

power consumption in NoCs are conflicting

objectives, as improvement of one objective

may deteriorate the other objectives.
[11]

 As

mentioned above, we focus on performance

metrics in this article such as utilization and

latency of packets.

Fault-tolerance is defined as the

ability of a system to continue operation

despite presence of faults. In this sense,

fault-tolerance is closely related to concepts

such as reliability, availability, and

dependability, as it serves by providing

these features. Faults in a network take

many forms, such as hardware faults,

software bugs, or malicious sniffing or

removal of packets. The first step in dealing

with errors is to understand the nature of

component failures and then to develop

simple models that allow us to reason out

the failures and the methods for handling

them. Classification of faults by nature is

either random or systematic faults. Random

faults are usually hardware faults affecting

the system components, which occur with a

certain probability, while systematic faults

such as software failures are faults which are

not random, whether a component has it or

not. We assume that such permanent failures

are detected and contained on a node or link.
[12]

The proposed fault tolerant

architecture takes advantage of the fact that

one can change the size of each buffer in

accordance to the application needs. When a

fault occurs in a buffer slot, instead of

disabling the entire input channel, one

isolates the faulty slot. To sustain

performance the input channel can borrow

buffer slots from the neighbors according

the monitoring architecture.
[13]

 International Journal of Research & Review (www.gkpublication.in) 358

Vol.2; Issue: 6; June 2015

There are two main kinds of thermal

problems in Network-on-Chip, including

regional temperature differential and

hotspot. Regional temperature differential is

caused by the thermal unbalanced

distribution in the network. It makes link

latency and gate latency hard to predict thus

increasing the possibility of system

synchronization failure. Hotspot is the node

whose temperature is much higher than the

others’ in the network. A hotspot is formed

when processing too much data and

generating large amount of dynamic power

consumption. The hotspot node will easily

get damaged for its high temperature. Both

regional temperature differential and hotspot

decrease system reliability and infect system

performance.
[14]

IV. IMPROVED-FAULT-TOLERANT-

ROUTING ALGORITHM

This section describes how we

evaluate an existing technique for fault-

tolerant wormhole routing in NoC with a

mesh-based topology. The routing algorithm

considered in this paper is a deterministic e-

cube routing as long as no faults occur.

When facing a faulty link or node a given

flit cannot be routed along its normal e-cube

route and its direction would be changed

according to a bracket of rules and it would

be re-routed along a fault chain or ring

around the faulty nodes or links. These rules

have been put forward by Chalasani and

Boppana.
[15]

 The main idea is described in

the rest of this section.

A. Fault-Tolerant-Routing (FTR):

Primitive Algorithm

The algorithm presented by Chalasani

and Boppana, FTR, uses four virtual

channels (VCs). This algorithm is able to

pass faulty blocks and overlapped faulty

regions. Each message is injected into the

network as a row message (message must

travel horizontally at first) and its status is

set to normal. Messages are routed along

their deterministic e-cube hop if they are not

blocked by faults. When faults are

happened, its status would be set to

misrouted and depending on the message

type and relative position of destination

nodes to source nodes, direction of messages

are set to clockwise or counter-clockwise by

use of table 1.
[15]

 Messages are routed on

border of faulty block according to specific

directions. The status of a message which is

passed the faulty region would be

configured to normal again.

B. Improved- Fault-Tolerant-Routing

(i-FTR): Modified Algorithm

The e-cube routes a message in a row until

the message reaches a node that is in the

same column as its destination, and then

routes it in the column. For fault-free

meshes, the e-cube provides deadlock-free

shortest path routing without requiring

multiple virtual channels to be simulated. At

each point during the routing of a message,

the e-cube specifies the next hop which

should be taken by the message. The

message is assumed to be blocked by a fault,

if its e-cube hop is on a faulty link.
[16]

 The

evaluated modification uses number of VCs

as same as primitive algorithm. An entire

column/row fault which disconnects meshes

has not been considered.
[17]

To route messages around faulty

rings (f-rings), they are classified into one of

the following types: EW (East-to-West), WE

(West-to-East), NS (North-to-South), or SN

(South-to-North). A message is labeled as

either an EW or WE message (row

direction) when it is generated, depending

on its direction of travel along the row. Once

a message completes its row hops, it

becomes a NS or a SN message (column

direction) depending on its travel direction

along the column. Thus, EW and WE

messages will become NS or SN messages;

however, NS and SN messages cannot

change their types because of live-lock and

dead-lock.
[17]

 Proposed algorithm and

 International Journal of Research & Review (www.gkpublication.in) 359

Vol.2; Issue: 6; June 2015

procedures needed are given in fig. 1 and

fig. 2.

Procedure Set-Message-Type (M)

/* Comment: The current host of M is (s1,s0) and destination is (d1,

d0).

When a message is generated, it is labeled as WE if d0≥s0 and as

WE otherwise. */

If M is an EW or WE message and s0 = d0,

Change its type to NS if s1< d1 or SN if s1> d1.

Procedure Set-Message-Status (M)

/* Comment: Determine if the message M is normal or misrouted.

The current host of M is (s1, s0) and destination is (d1, d0). */

1) If M is a column message and s0 = d0, and its next e-cube hop is

not on a faulty link, then set the status of M to normal and return.

2) If M is a row message and its e-cube hop is not blocked, then

set the status of M to normal and return.

3) Set the status of M to misrouted, determine using Table 1 the f-

ring orientation to be used by M for its misrouting.

Figure 1: Set-Message-Type and Set-Message Status

procedures.

The technique evaluated in this paper

has one primary advantage over the one

presented in the previous work. According

to,
[8]

 as long as no fault occurs, a flit always

uses a fixed virtual channel (channel c0 for

EW message, c1 for WE, c2 for NS and

channel c3 used for SN messages). When

faults are occurred and a flit is re-routed, it

uses specific virtual channel depending on

pre-defined set of rules. However, in the

current paper, a flit is allowed to use all

virtual channels instead of just one fixed

virtual channel when its type is NS or SN

and located on the boundary of a fault block.
[17]

 But in FTR algorithm using from just

two virtual channels is permitted in this

situation. Using this modification,

simulations are performed to evaluate the

performance of the enhanced algorithms

compared to the algorithms proposed in

prior work. Simulation results indicate an

improvement in the average message delays

and average message wait times (for source

nodes) for different fault rates. Furthermore,

the enhanced approach can handle higher

message injection rates, it means it has

higher saturation rate in hotspot and local

traffic. Moreover, utilization of evaluated

algorithms showed that the new algorithm

has higher performance in comparison with

old one. Utilization illustrates the number of

flits in each cycle, which passed from one

node to another, in any link over bandwidth.

Bandwidth is defined as the maximum

number of flits could be transferred across

the normal links in a cycle of the network.

Table 1: Direction to be used for misrouted messages on faulty

rings

Message

Type

Traversed

on the

f-ring

Position of

Destination

F-Ring Orientation

NS or

SN

No Don't care Either orientation

EW No In a row

above its row

of travel

Clockwise

EW No In a row

below its row

of travel

Counter Clockwise

EW No In the same

row

Either orientation

WE No In a row

above its row

of travel

Clockwise

WE No In a row

below its row

of travel

Counter Clockwise

WE No In the same

row

Either orientation

Any

message

Yes Don't care Choose the

orientation that is

being used by the

message

Procedure i-Fault-Tolerant-Route (Message M)

/* Specifies the next hop of M */

1) Set-Message-Type (M).

2) Set-Message-Status (M).

3) If M is normal, select the hops specified by

thex-y algorithm and use all 4 virtual channels.

4) If M is misrouted, select the hop along its f-ring orientation.

5) If the selected hop is on an f-ring link, route the message using

all 4 virtual channels when M not blocked yet.

6) If the selected hop located on an f-ring link, route the message

using virtual channel c0 if M’s type is EW, c1 if WE, c2 if NS, or

c3 if SN.

7) If the selected hop is not on an f-ring link, route the message

using the virtual channel specified by the base algorithm.

Figure 2: i-Fault-Tolerant-Route (i-FTR) procedure.

V. RESULTS AND DISSCUTIONS

In this section, we will describe how we

perform the simulation and acquire results

from simulator. Furthermore, we show the

improvements of the modified algorithm.

A. Simulation Structure

 International Journal of Research & Review (www.gkpublication.in) 360

Vol.2; Issue: 6; June 2015

In order to model the interconnection

network, an object-oriented simulator was

developed base on.
[18-20]

 The simulator is

structured so that classes, such as routing

algorithm or message traffic can be changed

without any change in other components. A

flit-level simulator has been designed. We

record average message latencies measured

in the network with the time unit equal to

the transmission time of a single flit (one

clock cycle). Our study is performed for

10% fault rates for all links faulty. In our

simulation studies, we assumed message

length to be equal to 32 flits and we used an

8 × 8 2-D mesh network. Two traffic

patterns are simulated:

a) Hotspot – Messages are destined to a

specific node with a certain

probability and are otherwise

uniformly distributed.

b) Local traffic – The source node

sends messages to any other node

with equal probability but with fixed

maximum distance. We use

Manhattan distance calculated as

follows:

Dm = | xs – xd | + | ys – yd |

 (1)

In equation above, D means distance

and m denotes to Manhattan. Furthermore, x

denotes to dimension x and y denotes to

dimension y. Likewise, s used for source

node and d is destination node.

The number of messages generated

for each simulation result depends on the

network size and traffic distribution. It is in

the range of 2,000,000 to 4,000,000

messages. The simulator has three phases:

start-up, steady-state, and termination. The

start-up phase has been used to ensure that

network is in steady-state before measuring

message latency. For this reason the

statistics for the first 10% of generated

messages have not been gathered. All

measurements are obtained from the

remaining of messages generated in steady-

state phase. The termination phase would

continue till all the messages generated are

delivered.
[18]

In the remaining part of this section, we

described the effect of using our

modification on the performance of

deterministic routing in the mesh network in

details.

B. Simulation Results

Figures 3to 5 show the simulation results

for Average Message Delay (AMD),

Average Message Waiting in Source Nodes

(AMWS), and utilization over AMD with 32

flit messages on 8*8 2-dimentional mesh

network with hotspot traffic.
[18]

In order to generate hotspot traffic we

used a model proposed in.
[21]

 According to

this model each node first generates a

random number. If it is less than a

predefined threshold, the message is sent to

the hotspot node. Otherwise, it is sent to

other nodes of the network with a uniform

distribution.
[22]

As the mesh interconnection network is

not a symmetric network, we have

considered two types of simulation for

hotspot traffic in this network. In one group

of simulations, a corner node is selected as

the hotspot node and in the other group; a

node in the middle of the network is chosen

as the hotspot node, and finally averaged.

Hotspot rate is also considered in our study,

namely 10%.
[22]

We also considered local traffic for this

comparison and to show the effect of

mapping of elements. As learned by

simulation results for uniform traffic at our

study, it is founded that average number of

hopes for this 8 x 8 mesh with this algorithm

and other similar algorithms such as if-

cube3
[23]

 is about 5. As the result of this

practice, we used 5 Manhattan distance for

messages to learn if any node needs no more

than 5 hopes for destination what happened.

Fig. 6 to 8 shows the effects of such work

for evaluated algorithm.

 International Journal of Research & Review (www.gkpublication.in) 361

Vol.2; Issue: 6; June 2015

Fig. 3 shows the average message delay

(AMD) over the message injection rate

(MIR). This latency illustrates the number of

cycles between the time in which the first

flit of a message injected into the network

and the time that last flit of that message

reached to the destination node. One can

deduce that network which uses FTR

algorithm is saturated with lower MIR while

i-FTR algorithm has higher saturation point,

even with the same virtual channels. For

instance, by FTR algorithm, the AMD for

0.001 MIR is over 103 cycles, whereas the

other algorithm, i-FTR algorithm, has less

than 62 AMD in the network. In fact the

evaluated fault-tolerant routing algorithm

has lower AMD.

Figure 3: Average Message Delay (AMD) of FTR and i-FTR

routing algorithms. 10% of faulty links with Hotspot traffic.

Figure 4: Average Message Waiting in Source Nodes

(AMWS)of FTR and i-FTR routing algorithms. 10% of faulty

links with Hotspot traffic.

Figure 5: Performanceof FTR and i-FTR routing algorithms.

10% of faulty links with Hotspot traffic.

The next parameter which has been

studied is average message waiting in source

node (AMWS) which illustrates average

number of cycles that a message waits to

inject into the network due to lack of buffer.

As it is shown in fig.4somepart of delays

which messages are encountered with, is the

delay of waiting for an empty buffer in

source nodes. For instance, comparing fig. 3

and fig. 4significantly shows that about7

cycles of over 103 cycles of AMD in 0.001

MIR are caused by waiting in source nodes

which is about 7% of AMD.

Figure 6: Average Message Delay (AMD) of FTR and i-FTR

routing algorithms. 10% of faulty links with Local traffic.

0

20

40

60

80

100

120

0 0.0005 0.001 0.0015 0.002

A
ve

ra
g

e
 M

e
ss

a
g

e
 D

e
la

y
 (

c
y
c
le

)

Message Injection Rate (message/cycle)

F-T-R i-F-T-R

0

1

2

3

4

5

6

7

8

9

0 0.0005 0.001 0.0015 0.002

A
ve

ra
g

e
 M

e
ss

a
g

e
 W

a
it

in
g

 i
n

 S
o

u
rc

e

N
o

d
e
s

(c
y
c
le

)

Message Injection Rate (message/cycle)

F-T-R i-F-T-R

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
g

e
 M

e
ss

a
g

e
 D

e
la

y
 (

c
y
c
le

)

Utilization

F-T-R i-F-T-R

0

20

40

60

80

100

120

140

-2.95E-10.0010.0020.0030.0040.0050.0060.0070.0080.009 0.01

A
ve

ra
g

e
 M

e
ss

a
g

e
 D

e
la

y
 (

c
y
c
le

)

Message Injection Rate (message/cycle)

F-T-R i-F-T-R

 International Journal of Research & Review (www.gkpublication.in) 362

Vol.2; Issue: 6; June 2015

Figure 7: Average Message Waiting in Source Nodes (AMWS)

of FTR and i-FTR routing algorithms. 10% of faulty links with

Local traffic.

Figure 8: Performance of FTR and i-FTR routing algorithms.

10% of faulty links with Local traffic.

We have examined average message

delay (AMD) over utilization. Utilization is

the last parameter which has been evaluated

to compare performance of i-FTR algorithm

with FTR algorithm to work in faulty

conditions. The most valuable comparison

we have done between these two algorithms

is the rate of average message delay over

utilization. As fig.5 illustrates, the utilization

of the network channels which uses the FTR

algorithm is lower while the i-FTR

algorithm has been higher utilization. As an

example in fig. 5, we can look at the amount

of average message delay for both

algorithms with 2.1% utilization. In this

point of utilization, the network which is

using FTR has more than 103 AMD at 100%

traffic load while the other network, using i-

FTR, has about62 AMD, and it has not been

saturated. Comparing the utilization of these

algorithms for 100% traffic load, it is

obvious the network using i-FTR has 3.22%

utilization, whereas the other one has just

2.11% utilization in hotspot mode.

Utilization improvement of network is more

than 65% at 100% traffic load for this case.

We also consider abovementioned

parameters for local traffic. As showed in

fig. 6 i-FTR routing algorithm has lower

latency compared to FTR in this traffic

pattern. For example, for 0.0095 MIR i-FTR

has less than 116 AMD whereas FTR has

more than 130 AMD. Moreover, i-FTR

algorithm has higher saturation point in

comparison with FTR algorithm in local

traffic pattern.

Additionally, the next parameter,

average message waiting in source nodes

(AMWS), clarified this improvement. As we

can see in fig. 7 a large portion of delays

caused by AMWS which is lower for i-FTR.

The last parameter we consider is AMD

over utilization in local traffic pattern to

show the performance of i-FTR. As an

example i-FTR algorithm has higher

utilization for 130 AMD, 17%, compared to

15.97% for FTR which demonstrates 6.5%

performance improvement in this case at

100% traffic load.

VI. CONCLUSION

Designing a deadlock-free routing

algorithm that can tolerate unlimited number

of faults is a great challenge. Faulty blocks

are extended, by disabling good nodes, to be

solid faults in existing fiction to assist the

designing of deadlock-free routing

algorithms for 2-D mesh networks. The

simulation results show that up to 70%

improvement of network delays in hotspot

traffic pattern and over 12% in local traffic

0

5

10

15

20

25

30

35

-2.95E-10.0010.0020.0030.0040.0050.0060.0070.0080.009 0.01

A
ve

ra
g

e
 M

e
ss

a
g

e
 W

a
it

in
g

 i
n

 S
o

u
rc

e
 N

o
d

e
s

(c
y
c
le

)

Message Injection Rate (message/cycle)

F-T-R i-F-T-R

0

20

40

60

80

100

120

140

0 5 10 15 20

A
ve

ra
ge

 M
e

ss
ag

e
 D

e
la

y
(c

yc
le

)

Utilization

F-T-R i-F-T-R

 International Journal of Research & Review (www.gkpublication.in) 363

Vol.2; Issue: 6; June 2015

pattern which are needed to work with

rectangular faults can be recovered if the

number of original faulty links is less than

10% of the total network links. Furthermore,

we showed 65% and 6.5% improvement for

utilization in hotspot and local traffic

pattern, respectively.

In this paper, for the purpose of

improving performance, we evaluated a

method to shrink these block faults by using

the same virtual channels as primitive

algorithm.

The deterministic algorithm is

enhanced from a non-adaptive supporter by

utilizing the virtual channels that are not

used in the non-faulty conditions. The

method we used for enhancing the i-FTR

algorithm is simple, easy and its principle is

similar to the previous algorithm, FTR.

There is no restriction on the number of

faults tolerated in the proposed algorithm.

ACKNOWLEDGEMENT

This work is supported by Sama
Technical and Vocational Training College,

Islamic Azad University, Ahvaz Branch. The

authors would like to thank them for their
funding on this research project.

REFERENCES

1. Jian Wu, Zhen Zhang, and Chris Myers.
A Fault-Tolerant Routing Algorithm for

a Network-on-Chip Using a Link Fault

Model. 32nd International Symposium
on Reliable Distributed Systems; 2013

Sept. 30 -Oct. 3; Braga, Portugal. IEEE;

2013. P. 1-9.
2. Amit Zinzuwadia, Parag Parandkar,

Renu Verma, Sumant Katiyal. An

Efficient Deadlock-free NARCO based

Fault Tolerant Routing Algorithm in
NoC Architecture. International Journal

of Emerging Technology and Advanced

Engineering. 2012; 2(2): 227-234.
3. Chaochao Feng, Zhonghai Lu, Axel

Jantsch, Minxuan Zhang, and Zuocheng

Xing. Addressing Transient and
Permanent Faults in NoC with Efficient

Fault-Tolerant Deflection Router. IEEE

Transactions On Very Large Scale
Integration (VLSI) Systems. 2013;

21(6): 1053-1066.

4. Chris Jackson, Simon J. Hollis. A

deadlock-free routing algorithm for
dynamically reconfigurable Networks-

on-Chip. Journal of microprocessors and

microsystems. 2011; 35(2): 139-151.
5. Anita Tino, Gul N. Khan. Designing

power and performance optimal

application-specific Network-on-Chip
architectures. Journal of micro-

processors and microsystems. 2011;

35(6): 523-534.

6. Teijo Lehtonen, Pasi Liljeberg, and Juha
Plosila. Analysis of Fault Tolerant

Deadlock-free Routing Algorithms for

Mesh NoCs. 3rd Workshop on
Diagnostic Services in Network-on-

Chips; 2009 April 24; Nice, France.

2009. p.54-57.
7. Junhui Wanga, Huaxi Gu, Yintang

Yang, Kun Wang. An energy- and

buffer-aware fully adaptive routing

algorithm for Network-on-Chip.
Microelectronics Journal. 2013; 44(2):

137–144.

8. P. Lotfi-Kamran, A.M. Rahmani, M.
Daneshtalab, A. Afzali-Kusha, Z.

Navabi. EDXY – A low cost

congestion-aware routing algorithm for

network-on-chips. Journal of Systems
Architecture. 2010; 56(7): 256–264.

9. Wen-Chung Tsai, Kuo-Chih Chu, Yu-

Hen Hu, Sao-Jie Chen. A scalable and
fault-tolerant network routing scheme

for many-core and multi-chip systems. J.

Parallel Distrib. Comput. 2012; 72(11):
1433–1441.

10. Rahmati, H. Sarbazi-Azad, Sh. Hessabi,

A. Eslami Kiasari. Power-efficient

deterministic and adaptive routing in
torus networks-on-chip. Micro-

processors and Microsystems. 2012;

36(7): 571–585.
11. A. Patooghy, S. Gh. Miremadi.

Complement routing: A methodology to

design reliable routing algorithm for

 International Journal of Research & Review (www.gkpublication.in) 364

Vol.2; Issue: 6; June 2015

Network on Chips. Microprocessors and

Microsystems. 2010; 34(6): 163–173.
12. F. Safaei, M. ValadBeigi. An efficient

routing methodology to tolerate static

and dynamic faults in 2-D mesh

networks-on-chip. Microprocessors and
Microsystems. 2012; 36(7): 531–542.

13. Debora Matos, Caroline Concatto,

Anelise Kologeski, Luigi Carro, Marcio
Kreutz, Fernanda Kastensmidt, Altamiro

Susin. A NOC closed-loop performance

monitor and adapter. Microprocessors
and Microsystems. 2013; 37(6-7): 661–

671.

14. Feiyang Liu, Huaxi Gu, Yintang Yang.

DTBR: Adynamic thermal-balance
routing algorithm for Network-on-Chip.

Computers and Electrical Engineering.

2012; 38(2): 270–281.
15. S. Chalasani, R.V. Boppana.

Communication in Multicomputers with

Nonconvex Faults. IEEE Trans. on
Cmputers. 1997; 46(5): 616-622.

16. M. Mohtashamzadeh, L. Momeni, A.

Rezazadeh. An Innovative Fault-

Tolerant Method for 2-D Mesh-Based
Network-on-Chip Routing. UKSim 5th

European Symposium on Computer

Modeling and Simulation; 2011 Nov.
16-18; Madrid, Spain. IEEE; 2011. p.

339-343.

17. A. Rezazadeh, M. Fathy, Gh.

Rahnavard. An Enhanced Fault-Tolerant
Routing Algorithm for Mesh Network-

on-Chip. Int. Conf. on Embedded

Software and Systems; 2009 May 25-27;
Zhejiang, China. IEEE; 2009. p. 505-

510.

18. L. Momeni, A. Rezazadeh, D.
Abednejad. Improved-XY: A High

Performance Wormhole-Switched

Routing Algorithm for Irregular 2-D
Mesh NoC. In: S. Fong et al. 3th

International Conference on Networked

Digital Technologies; Communications

in Computer and Information Science;
2011 July 11-13; Macau, China.

Springer; 2011. p. 93-104.

19. Arshin Rezazadeh and Mahmood Fathy.
Throughput Considerations of Fault-

Tolerant Routing in Network-on-Chip.

In: S. Ranka et al. Second International
Conference; 2009 August 17-19; Noida,

India. Springer; 2009. p. 81–92.

20. Arshin Rezazadeh, Ladan Momeni, and

Mahmood Fathy. Performance
Evaluation of a Wormhole-Routed

Algorithm for Irregular Mesh NoC

Interconnect. In: K. Kant et al. 11th
International Conference, ICDCN 2010;

2010 January 3-6; Kolkata, India.

Springer; 2010. p. 365–375.
21. J. Duato, S. Yalamanchili, and L.M. Ni.

Interconnection Networks: An

Engineering Approach. Morgan

Kauffman, 2003.
22. J. Duato, S. Yalamanchili and L. Ni,

"Interconnection networks: An

Engineering approach," Published by
Morgan Kaufmann, 2003.

23. Samad Rostampour, Ladan Momeni,

Arshin Rezazadeh. A Numerical

Solution for Throughput Improvement
of On-Chip Irregular Mesh

Interconnection Network. UKSim 5th

European Symposium on Computer
Modeling and Simulation; 2011 Nov.

16-18; Madrid, Spain. IEEE; 2011. P.

323 – 328.

How to cite this article: Momeni L, Rezazadeh A. Performance evaluation of fault-tolerant routing for

network-on-chip in hotspot and local traffic. Int J Res Rev. 2015; 2(6):355-364.

